az United States Patent

Secareanu

US012095485B2

US 12,095,485 B2
Sep. 17, 2024

(10) Patent No.:
45) Date of Patent:

(54) BINARY DATA COMPRESSION /
DECOMPRESSION METHOD

(71) Applicant: Radu Mircea Secareanu, Phoenix, AZ
Us)
(72) Inventor: Radu Mircea Secareanu, Phoenix, AZ
Us)
(73) Assignee: RADU MIRCEA SECAREANU,
Phoenix, AZ (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 164 days.
(21) Appl. No.: 17/974,057
(22) Filed: Oct. 26, 2022
(65) Prior Publication Data
US 2024/0146328 Al May 2, 2024
(51) Imt. CL
HO3M 7/30 (2006.01)
HO3M 7/46 (2006.01)
(52) UsS.CL
CPC HO3M 7/3088 (2013.01); HO3M 7/46
(2013.01)
(58) Field of Classification Search
CPC ... HO3M 7/30; HO3M 7/46; HO3M 7/3088
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
5,109,226 A * 4/1992 MacLean, Jr. HO3M 7/42
341/95
5,136,291 A * 8/1992 Teagueccoceuu. GOG6F 5/00
341/83
o Ritype 4 5 5
101 NO1 4 9 11
1027 MO 2 5 10 12
103"

7 8 &
8 9 9

Zisle |
1312 10 10 12 8 8

5324923 A * 6/1994 Cymbalski GO6K 7/14
235/494
5475388 A * 12/1995 Gormish HO3M 13/23
341/58
5488364 A * 1/1996 Cole ..o GO6T 9/005
341/63
5,710,562 A * 1/1998 Gormish GO6T 9/005
341/51
6,437,715 B1™* 82002 Cowlishaw HO3M 7/12
341/59
(Continued)

Primary Examiner — Lam T Mai

(57) ABSTRACT

A binary data compression/decompression method is dis-
closed, where any input binary data string (IFDS) is
uniquely and reversibly compressed/decompressed without
any data loss by first uniquely formatting and fully describ-
ing the IFDS using a set of well defined binary constructs,
followed by creating complex structures from custom com-
binations of said binary constructs that occur within the
arbitrary IFDS content, wherein the choice of the said
custom combinations depend on the said IFDS content in
term of binary constructs therefore creating IFDS content
variations and distributions from an expected nominal base
wherein said variations and distributions reflect the actual
content of the arbitrary IFDS, followed by uniquely pro-
cessing these variations and distributions in content using
several schemes where each scheme brings a unique com-
pression feature, and wherein once this processing com-
pletes (i.e. the end of the arbitrary IFDS is reached), it is
called that the end of one compression cycle is reached, and
wherein another compression cycle can be applied to the
data by repeating the cycle steps, and where such compres-
sion cycles are repeated until the desired compressed file is
reached or until a file floor size limit is reached, floor size
below which the disclosed compression has limitations.

20 Claims, 6 Drawing Sheets

7 8 9 10 11 12 13
| 1 7 7

14 15 16 17 18 19 20 21 >22
8 5 4 2 3 2 0
6 5 3 4 3 1

ch
1677

US 12,095,485 B2

Page 2
(56) References Cited 2011/0128167 Al* 6/2011 Schneider HO3M 7/3086
341/51
U.S. PATENT DOCUMENTS 2013/0063288 AL* 3/2013 Bley ...ccoooorvvvvnvncces HO4L 69/04
341/87
7,215,265 B2* 5/2007 Guionnet HO03M 7/30 2014/0070966 Al* 3/2014 Fablet ..o, HO3M 7/3086
341/67 341/55
7,348,904 B2* 3/2008 Christoffersson HO3M 7/30 2015/0130645 Al* 5/2015 Dupont HO3M 7/6029
341/60 341/60
7,609,000 B1* 10/2009 Sharma HO3M 7/40 2015/0303940 A1* 10/2015 Dupont ..o HO3M 7/30
341/59 341751
*

8,098,247 B2* 12012 Crucs ..o H0331;/I2/72/3% 2016/0191075 Al* 6/2016 Branscome HO3M 7/4037
341/67

8,041,513 B1* 1/2015 Dupont HO3M 7/6088
o upon 34151 2016/0204796 Al* 7/2016 Burukhin HO3M 7/3077
9,743,117 B2* 82017 Gervais ... HO3M 7/4006 . 341/51
11,677,416 B2* 6/2023 Secareanu . HO3M 7/6005 2022/0368345 Al* 11/2022 HO3M 7/40
341/50 2023/0188162 Al* 6/2023 Ramadhane . GO6N 20/00
2003/0223646 Al* 12/2003 O’Neill HO3M 7/40 341/50
382/246 2023/0224141 Al* 7/2023 Secareanu HO4L 9/0631
2006/0238390 Al* 10/2006 Yi wovvvcoooorvvrecerernnnes HO4N 19/94 713/150
341/87 2023/0253982 Al* 8/2023 Secareanu HO4L 9/0662
2010/0039300 A1* 2/2010 Dey ..ccoovvrrvvvnvecees HO3M 7/3088 341/51

341/51

2010/0219991 Al* 9/2010 Tang HO3M 7/30

341/55 * cited by examiner

US 12,095,485 B2

Sheet 1 of 6

Sep. 17, 2024

U.S. Patent

I 'Ol

\.\...«

L L

mm NM ..m.m mﬁ

0T

B

¢

NM

5
€

m

g
E S .;@;s..;s%; W ;:é;:é
s M_NW 114 61 81

¥

TETE T
LT 9T ST

U.S. Patent Sep. 17, 2024 Sheet 2 of 6 US 12,095,485 B2

20F
\1
S
[y

$a 3 b b

203
M1 -~ e 210 100 000 000 “ 100 000 000 O
! !

¥

M2 -,~211 g 100_100_000 4w 100_000_000_1

M3-1 k 110000 010 S0
M3 212 110 000 011| mp 110 000 01

z-:i._\r L .
=ANG 206

e,

FIG. 2

U.S. Patent

Sep. 17,2024 Sheet 3 of 6 US 12,095,485 B2

o 498

O_K_CM_1,.,0_K _CM_L

A

314 =
2 313

7 0001 10100 1 <index>
1o
302 ;\\

N 5 R N e

M1~ 305
¥

320

K e 486

384
N,

.

0001 10100 1

0001_10100 4w 0001 10100 0

Y

333

FIG. 3

U.S. Patent

402
>

i

~§ AN

M4~ 404

M — 403

Ly

441

Sep. 17,2024 Sheet 4 of 6 US 12,095,485 B2

K . 4956

e ¥

.,\-.A.\‘ \-'“’“"\‘
<C> mmmp <C> <yar>

E]]
a7 § ‘ 408

5 N
- ey -
o, . e

~)

FIG. 4

U.S. Patent Sep. 17, 2024 Sheet 5 of 6 US 12,095,485 B2

503
\’z
‘:c_\\

120yl . v2 . v3 .. 498

x1 X1yl O e——— 511 9 0

5 e
503 507 506
[
564
%32 X3y3 9
5 Q g 518 5 1 2 >°\ 2 13
S N > Bos e

o xiyl 91 x2y2 9 1 <8b> 0 «8b> 1
100 Lla,_\ : | 53.5~~-z_~.‘--~»v-i<3§3:~“ i
. xiyl 9 10 l 515~y <8b> 1 0 «8b>_1 1

l 511 ——X2y2_ 3 10 Nt '

o

FIG. 5

U.S. Patent Sep. 17, 2024 Sheet 6 of 6 US 12,095,485 B2

\\\M_:‘i'g. 8&3

Formatting gy 602

Processing g 603
Generating

compressed output |~ 504

J‘: Testing g &h%

) \\R\\ A N &07
506

Dataready foruse |~ 608

FIG. 6

US 12,095,485 B2

1

BINARY DATA COMPRESSION /
DECOMPRESSION METHOD

FIELD

The present disclosure relates to binary data compression/
decompression methods, and in particular to binary data
compression/decompression methods that are suitable to be
implemented in silicon, as a circuit, in addition (or not only)
to be implementable in software.

BACKGROUND

Certain aspects disclosed in the utility patent applications
(UPA) mentioned below are being used in the present
disclosure. These UPA are filed by the same unique inventor
as the present disclosure. These UPA are mentioned here as
background for this disclosure. The present disclosure rep-
resents new matter. These background utility patent appli-
cations (UPA) are:

Application Number: 17398728

Applicant Name: Radu Mircea Secareanu

Filing date: 10 Aug. 2021

Application Number: 17573438

Applicant Name: Radu Mircea Secareanu

Filing date: 11 Jan. 2022

Application Number: 17667650

Applicant Name: Radu Mircea Secareanu

Filing date: 9 Feb. 2022

SUMMARY

At the onset, a note regarding the structure of this dis-
closure is required, note that will enable better understand-
ing of the flow of the disclosure. Key concepts are defined,
detailed, and exemplified, concepts that the disclosed
embodiments from the present disclosure are based on. The
binary data compression/decompression method, or the
BDCD method, is progressively introduced during this
process.

In summary, the BDCD method works as follows: an
Initial Full Data String (IFDS) is serially formatted into a
number of sequential Processing Strings (PS), where the
length of each PS is determined by two conditions: 1) the
occurrence of a fixed bit pattern, called Delimiter (DE) or 2)
by the reach of a set maximum limit number of bits and/or
a group of bits of well defined content with a number of bits
less than the said maximum limit number of bits. Every PS
consists of two parts: a root identifier (RI) part, followed by
a detail (DL) part. A well defined set of RI is formed, and
with this set, any arbitrary IFDS can be described. This
description of any arbitrary IFDS using this well defined set
of RI is called internal formatting (INFORM) of the IFDS.
All these details are described and related claims are for-
mulated in the above mentioned UPA. The BDCD method is
processing the arbitrary RI content of an arbitrary IFDS to
obtain data compression. The BDCD method is achieving
this data compression by creating complex structures from
combining RI, therefore creating IFDS content variations
and distributions from the nominal IFDS content, variations
and distributions that reflect the actual content of the arbi-
trary IFDS. The BDCD method is processing these complex
structures using several schemes, as detailed in this disclo-
sure. Once this processing completes (i.e. the end of the
arbitrary IFDS is reached), it is called that the end of one
compression cycle is reached. Another compression cycle
can be applied to the data by repeating the process, using as

20

25

30

40

45

60

65

2

new IFDS the output of the just completed compression
cycle. Every new BDCD method cycle consists of the
INFORM step of the previously completed compression
output, followed by the above mentioned compression pro-
cessing. Theoretically, an unlimited number of cycles can be
employed. Practically, there is a file floor size limit (i.e. a file
that is smaller than the file floor size may not provide
compression gain). The file floor size limit depends on the
BDCD method implementation options, and will be exem-
plified in the disclosure.

The decompression is perfectly mirrored to the compres-
sion process, leading to an identical, lossless restored file to
the initial IFDS, which was the input to the first cycle.

The preferred implementation of the BDCD method is a
hardware implementation. A software implementation will
replicate identically all the functionality of the BDCD
method, therefore the hardware and the software implemen-
tations are perfectly equivalent from the functionality point
of view. A hardware implementation is more expensive than
a software implementation, but it is faster in term of com-
pression/decompression speed. Therefore, there is a trade-
off between cost and speed between a hardware and software
implementation. Because a hardware implementation is
faster than a software implementation, certain applications
are preferable to be implemented, and possibly only enabled,
in a hardware implementation. On the other hand, because a
software implementation has a much lower cost than a
hardware implementation, certain applications are prefer-
ably implemented in a software implementation enabling a
low cost for the user.

Concerning the hardware implementation aspects, as will
be apparent from the details presented in this disclosure to
a person familiar with digital design, the preferred hardware
implementation of the BDCD method is, due to the serial
nature of the BDCD method, a fully-pipelined based archi-
tecture. Such an architecture will provide the highest com-
pression/decompression speed possible in a hardware imple-
mentation.

BRIEF DESCRIPTION OF DRAWINGS

Embodiments will be described, by way of example, with
reference to the drawings, in which

FIG. 1 is used to summarise the set of Root Identifiers
(RI), set that is used to describe any arbitrary binary input
string, set that is used in one or more of the embodiments.

FIG. 2 is used to summarise the key embodiments and
steps of the disclosed Scheme 1.

FIG. 3 is used to summarise the key embodiments and
steps of the disclosed Scheme 2.

FIG. 4 is used to summarise the key embodiments and
steps of the disclosed Scheme 3.

FIG. 5 is used to summarise the key embodiments and
steps of the disclosed Scheme 4.

FIG. 6 is used to summarise the data flow from the initial
data input to the final compressed data output, in accordance
to one or more of the disclosed embodiments.

DETAILED DESCRIPTION OF THE
INVENTION

At the outset it should be noted that the examples pre-
sented in the disclosure are in no way limiting, and the
skilled person will appreciate that the disclosure is equally
applicable to multiple variations and alternatives, and mul-
tiple optimizations are possible to increase the performance,
such as the compression efficiency and speed.

US 12,095,485 B2

3

As disclosed in the above mentioned UPA, in particular in
Ser. No. 17/667,650, any arbitrary IFDS can be described
using a well defined set of PS, respectively a well defined set
of RI. This set of RI is summarised in FIG. 1, where:

Rows 101 and 104 detail existing RI classes. The RI
classes are greater than 3, where the number represents
the number of bits in the RI.

Rows 102 and 105 detail the number of distinct RI in each
class, called RI class members, excluding RI corre-
sponding to PS of same type bits.

Rows 103 and 106 detail the number of distinct RI in each
class, called RI class members, including RI corre-
sponding to PS of same type bits.

Column 107, labelled “>22” (greater than 22), is placed in
FIG. 1 for convenience, detailing in reality all PS of
same type bits greater than 22. In reality, there is one
entry/column for every PS of same type bits such as 22,
23, 24 . . ., theoretically to infinity, where each entry
has one member. There are no RI greater than 22 other
than RI describing same type bits PS.

Each RI class member has a very well defined nominal
probability of occurrence in an IFDS. A member of class 4
RI has a nominal probability of occurrence of 6.25%, and
this probability halves with every class increase. A 6.25%
probability means for example that one in 16 PS (RI) that
occurs in an arbitrary IFDS, is of that member type. This is
a nominal occurrence rate, wherein in reality, there is a
variability and distribution of occurrences for every member
of, every RI class. The goal of the BDCD method is to
exploit this variability and distribution in order to create
compression for any arbitrary IFDS. To achieve this goal,
constructs of RI content of an IFDS are created and pro-
cessed using various schemes. These constructs can cover RI
grouping, such as pairs, triplets, quadruplets, etc. of RI. In
this disclosure, exemplification will be given using pairs of
RI. For higher order grouping, the compression behaviour
improves, with the disadvantage that a higher order group-
ing will require a larger IFDS slice, therefore a larger file
floor size, as introduced above. Many other constructs of the
RI content of an IFDS, other than grouping, are possible—
such other constructs are not detailed in this disclosure
because the concepts and outcome are similar.

Since, as shown in FIG. 1, an RI can have minimum 4 bits
and maximum infinity, a pair of RI can therefore have
minimum 8 bits and maximum infinity. A specific RI pair of
X number of bits will be called in this disclosure a member
of RI pair class X. For example, since there are 5 members
of class 4 RI, there will be 25 members of RI pair class 8.
Since there are 5 members of class 4 RI and 10 members of
class 5 RI, there will be 100 members of RI pair class 9,
representing all combinations of (a class 4 RI member)
followed by (a class 5 RI member), or (a class 5 RI member)
followed by (a class 4 RI member), in short, 4-5 or 5-4.
Similarly, RI pair class 10 will have 220 members, repre-
senting all possible combinations 4-6, 5-5, 6-4. The maxi-
mum number of members in an RI pair class is for RI pair
class 22, with 1276 members.

The concepts of “contained class”, “origin class”, and
“target class” are introduced. A contained class is where all
compression process occurs within that class only. An origin
class and a target class create a pair of classes to complete
the compression process. The compression within a con-
tained class is different than the compression within a pair of
origin class and a target class, both these compression
processes being described below.

The concept of “pairing range” is introduced. A pairing
range represents a set of PS within a processing string in

—_

5

20

25

40

45

60

65

4

which a pair of two RI can be created. Conventionally, a pair
of two RI is created between two consecutive RI (PS). A
pairing range can be for example a set of 32 RI (PS), where
a pair of RI can be created between any two members of the
set. There are 2*C32_2 (twice times combinations of 32
taken 2) pairs that can be considered in this set of 32 R, i.e.
992 pairs. Note that in this 992 pairs there are direct and
reverse pairs—for example, in the 32 RI set, the pair created
between RI number 9 and RI number 15 (pair 9-15) is a
direct pair, while the pair created between RI number 15 and
RI number 9 (pair 15-9) is a reverse pair. If RI number 9 is
of class 4 and RI number 15 is of class 5, pair 9-15 will
create a class 9 RI pair of configuration 4-5, while pair 15-9
will create a class 9 RI pair of configuration 5-4, where the
two configurations are dependent of each other, being made
of'same class 4 and class 5 RI members, and having the same
number of occurrences in a string and RI pairing range.
Therefore, direct and reverse pairs are dependent on each
other. In a pairing range therefore, there are a number of
independent pairs and double that number of dependent
pairs (in the 32 RI pairing range example, there are 496
independent pairs and 992 dependent pairs).

The size of a pairing range is a function of what RI pair
class is used. The RI pair class, in turn, is chosen as a
function of desired variability and distribution (the larger the
RI pair class, the larger the variability and distribution, and
therefore more beneficial for compression. For example, if
RI pair class 9 is chosen, the size of pairing range is 32, and
the variability and distribution is created over a matrix of
496 independent pairs by 100 members. If RI pair class 10
is chosen, the size of the pairing range is 64, and the
variability and distribution is created over a matrix of 2016
independent pairs by 220 members. The size of the pairing
range is chosen as the minimal size to contain one nominal
occurrence member of the lowest probability of the respec-
tive RI pair class.

BDCD_sl: BDCD Scheme 1

Scheme 1 refers to a BDCD implementation using a
contained class. In the exposition for Scheme 1, reference
will be made to FIG. 2. RI pair class 9 is used as the
contained class, to exemplify. As outlined, the pairing range
for class 9 is 32, and there are 496 distinct independent pairs
that can be created. For each of the 100 members in the class,
in one pairing range, nominally, there is 1 independent pair
that occurs. For an ideal distribution, in approximately 512
pairing ranges (i.e. 512*32 PS, or about 16,000 PS), all 496
distinct independent pairs occur once for that member. An
IFDS portion, or slice, is considered, where the size of this
slice is a multiple of 16,000 PS, so that for each member,
each of the 496 independent pairs is nominally represented
by the same integer number of occurrences.

In an arbitrary IFDS, there is a distribution of occurrences
for each of the 496 independent pairs per member, where a
distribution matrix of occurrences of size 496 (the columns
202 in FIG. 2) by 100 (the rows 201 in FIG. 2) is created,
distribution matrix that reflects the content of the arbitrary
IFDS slice. Out of this matrix, of 49,600 entries, where each
entry represents a member-pair construct, two entries, E1
(210 in FIG. 2) and E2 (211 in FIG. 2), that have the least
occurrences (N1 respectively N2), and one entry E3 (212 in
FIG. 2) that has the maximum occurrences (N3), are located.
E1, E2, and E3 must belong to the same pair (same matrix
column K in FIG. 2).

Say, within that pair (matrix column), E1 corresponds to
member M1 and has the regular representation as
100_000_000 (9 bit representation), then this representation
becomes 100_000_000_0 (10 bit representation 203 in FIG.

US 12,095,485 B2

5

2). E2, corresponding to member M2 will be represented by
100_000_000_1 (204 in FIG. 2). The original representation
of M2 (say this was 100_100_000) becomes available (not
used). E3, corresponding to member M3, has representation
110_000_011. The member with the representation where
the last bit from the M3 representation is flipped (i.e.
110_000_010, member (M3-1) in FIG. 2) will be repre-
sented by the original M2 representation, this transfer
achieving the availability of 100_100_000 to 110_000_010.
Once 110_000_010 becomes available, M3 can be repre-
sented using 8 bits (i.e. 110_000_01, 206 in FIG. 2), by
combining the two representations in block 205 of FIG. 2.
Therefore, each occurrence of members M1 and M2, with
least occurrences, will be represented using 10 bits (at a loss
of 1 bit per occurrence), while each occurrence of the said
member with maximum occurrences (M3) will be repre-
sented using 8 bits (at a gain of 1 bit per occurrence). A net
gain is obtained if N3>N1+N2.

Note that in the above exposition of the BDCD_s1, every
pair is using an alternate representation of same number of
bits as the original pair, alternate representation that can be
created straightforward. The condition for this alternate
representation is that all members within an RI pair class
have the last bits as a consecutive counter. For example, RI
pair class 9, class that has 100 members, will need a 7 bit
counter, and the representation will be <two fixed bits>_<7
bit counter>. Obviously 28 positions of the 7 bit counter will
become available and transferred into the 10 bit represen-
tation of RI pair class 10. This alternate representation of
pairs is needed only for the matrix pair (column) that carry
the E1, E2, E3 (M1, M2, M3).

BDCD_s1 does not require such alternate representation
of RI pairs for implementation, but such alternate represen-
tation is recommended because the implementation is easier
and more clear/focused. BDCD_s1 is disclosed when the
implementation employs this alternate representation.
BDCD_s2 implementation also recommends to have such an
alternate representation of the RI pairs, however, for clarity
in term of disclosing how to implement such a scheme
without employing such an alternate representation,
BDCD_s2 is disclosed without employing such an alternate
representation. Both schemes can be implemented either
way (with or without alternate representation), and since
both implementations are disclosed, one per scheme, the
disclosure is complete. The implementations are therefore
not repeated in this disclosure both for each scheme.

Continuing with the BDCD_s1 disclosure, note that
BDCD_s1 will require one pair (matrix column) out of 496
independent pairs to implement the scheme. Say this pair
occurs between PS number 4 and PS number 27 in the 32 PS
pairing range (i.e. matrix column 4_27) of every 32 PS
pairing range. From the point of view of this 4_27 pair, the
other 30 members of the 32 pairing range are irrelevant, they
may remain unpaired, or may be paired in a certain way in
order to achieve further compression for another of those
pairs. A maximum of 16 pairs can be created and achieve
compression for a 32 pairing range, so, a maximum of 16 out
of the 496 matrix columns will be active for an IFDS slice.
Within one of these 16 columns, there may be more than one
E1-E2-E3 triplets that meet the condition for compression
(i.e. N3>N1+N2).

To the condition for compression that the E1-E2-E3
triplets must meet, the cost must be added, where the cost
represents the number of bits to specify the pair (matrix
column, 9 bits required for class 9 that has 496 independent
pairs) and the three M1-M2-M3 members (7 bits required
for class 9 that has 100 members). Therefore, the cost for

—_

0

—_

5

20

25

6

class 9 is 30 bits. The condition for compression becomes
N3>N1+N2+30, or, generally, N3>N1+N2+cost.

EXAMPLES

a. For an IFDS slice of 32*16,000 with a nominal N of 32,
N1=18, N2=15, minimum N3=18+15+30. So, N1=18,
N2=15, N3=63, N_nom=32

b. For an IFDS slice of 128*16,000 with a nominal N of
128, N1=70, N2=80, minimum N3=70+80+30. So,
N1=70, N2=80, N3=180, N_nom=128

. If there are two triplets on the same matrix column
(pair) the pair (column) cost (9 bits) is shared between
the two triplets, leading to a total cost per triplet of 25.5
(26) (instead of 30).

d. If the same triplet is used for all 16 pairs chosen in a
suite of a pairing range used in an IFDS slice, then the
cost per pair per triplet becomes 9+21/16, or 11 (instead
of 30).

e. For an IFDS slice of 8%16,000 with a nominal N of 8,
it is a high probability that within the 496*100 member
distribution in the matrix, there are entries with zero
occurrences. In this case, only the entry with zero
occurrences suffice (instead of two members with mini-
mal occurrence), i.e. E1 suffice instead of E1 and E2.
The cost is also reduced from 30 to 23 (i.e. 9+2*7). In
this case, N1=0, resulting in a minimum N3=0+23. So,
N1=0, N3=23, N_nom=8.

f. Note at (e) above that the largest slice having an entry
with zero occurrences is desired. For example, if the
slice is 16*16,000, N1=0, N3=23, N_nom=16, distri-
bution that relaxes the requirements for N3.

g. If the two E1 and E2 entries (with N1 and N2
occurrences) have the same RI members (such as 4-5
and 5-4, with the same class 4 and class 5 RI), then the
cost is reduced from 30 to 23 (9 bit for the matrix
column plus 7 bit for the 4-5 member plus 7 bit for E3
member). A 1 bit identifier for this option may be added
to the cost, for a total cost of 24. This option is
particularly useful for low N_nom slices (such as
N1=16, N2=17, N3=57, for N_nom=32).

h. If multiple IFDS slices have similar entries, then the

cost is divided to the number of slices. For example, for
a cost of 30 and three slices that have same E1, E2, E3,
the cost per slice becomes 10. An identifier plus a
counter specifying the number of slices may be added
to the cost, addition that is also divided to the number
of slices, leading to the cost per slice increase of one bit
(11 instead of 10).

. If at (e) above, the E3 entry (with N3 occurrences) has
the same RI members as the E1 entry (with zero
occurrences) as described at (g) above, the cost is
further reduced to 9 (for the matrix column) plus 7 (for
the E1 entry) plus an identifier (1 bit) to specify this
option. This option is particularly useful for low
N_nom (for example, N1=0, N3=17 (cost, 9+7+1),
N_nom=8).

Multiple variations are possible, Multiple such triplets
and duplets can exist in an IFDS slice distribution within one
matrix column and within the 16 pairings within the pairing
range, to maximize the compression. In addition, multiple
RI pair classes can be considered at the same time, such as
class 9, class 10, and class 11. The larger the class, the wider
the distribution of entries (for example, for class 10, the
matrix size is 2016%*220), therefore the larger the probability
to find triplets that meet the compression condition or to find
entries with zero occurrences. Note also that focusing the

o

.

US 12,095,485 B2

7

compression on implementing entries with zero occurrences
will insure IFDS slices smaller in size, which is extremely
beneficial for certain applications such as live HI-Fi audio
broadcasting, including telephony.

BDCD_s2: BDCD Scheme 2

Scheme 2 refers to a BDCD implementation using an
origin class and a target class. Scheme 2 does not work in a
contained class. Scheme 2 is disclosed in an implementation
that does not employ the alternate representation of pairs. As
mentioned, this is done for full disclosure, in order to
exemplify how to implement such a scheme both ways (with
or without employing alternate representation of pairs). As
mentioned, both Scheme 1 and Scheme 2 can be imple-
mented either way. Also as mentioned, while Scheme 2 is
disclosed in an implementation that does not employ an
alternate representation of pairs, employing such a repre-
sentation is recommended because it is easier and has more
clarity. However, qualifications such as “easier” and “more
clarity”, are subjective; there is a complete freedom to
implement one way or another.

Discussions and examples for Scheme 2 will be disclosed
having primarily RI class 9 as origin class. Using upper
classes as the origin class, will lead, similarly as Scheme 1,
to wider variations and distributions, which are beneficial
for compression for similar reasons as discussed at Scheme
1. Scheme 2 has commonality with Scheme 1—only the
differences will be outlined below. FIG. 3 is used to facilitate
this part of the disclosure. In FIG. 3, the specifics for this
part of the disclosure that are relevant to the origin class are
detailed below line 320, while the specifics for the target
class are detailed above line 320.

For the origin class, below line 320 in FIG. 3, in the 496
(columns 302 in FIG. 3) by 100 (rows 301 in FIG. 3) matrix,
function of slice size, an entry E1 (305 in FIG. 3) with zero
or minimal occurrences is located. Be this entry located at
the intersection of pair (column) k and member M1 (row
M1) in the matrix. For better understanding, say that the
entry E1 represents, in the pairing range of every successive
group of 32 PS in the current IFDS slice, the pair between
PS 4 and PS 27 (i.e. matrix column 4_27, which is referred
to as column k). Member M1 (row M1) consists of RI of four
bits 0001 (for PS 4) and RI of five bits 10100 (for PS 27),
ie. it is a 4_5 RI pair class 9 member. In Scheme 1
implementation, this member was receiving an alternate 9
bit representation. In Scheme 2 implementation, the two
components of the member remain unchanged on their
position, with the only adjustment that if the member has
non-zero occurrences, the second RI in the pair (here the five
bit RI) receives a “_0” extension (i.e. it becomes 10100_0).
If the member has zero occurrences, the two Rls remain as
is without any adjustments. In this example, the 0001_10100
construct of the two Rls for that pair does not show up, so
the nine bit construct becomes available for use in the target
class.

As mentioned, for non-zero occurrences, if the two RI of
member M1 would be put together, they would form the
unique ten bit construct 0001_10100_0 (303 in FIG. 3).
Given that this unique construct is identified in the matrix,
at the pair (column) member (row) intersection, the
0001_10100_1 (304 in FIG. 3) becomes also in existence as
a unique construct. In this scheme, this unique construct will
be used to describe members of a target (upper class), rather
than being used in conjunction with another member E2 to
create gain using E3 (as in Scheme 1). So, in Scheme 2, E1
and a target class is needed, rather than a triplet as in
Scheme-1.

20

25

40

45

55

60

65

8

Concerning the target class (above line 320 in FIG. 3),
consider for example class 19 as the target class. Before
detailing the said class 19 target class for this example, the
big picture is introduced. A so called target matrix from
where a target class can be chosen, is formed. This target
matrix is of size 496 (same size as the matrix for the origin
class, columns 311 in FIG. 3) by CN (rows 310 in FIG. 3).
The columns in the target matrix have exactly the same
significance as in the origin matrix, i.e. they represent the
pairs created within the pairing range; clearly, these pairs
apply for all classes. Each row in the target matrix represents
a class, where such class is of larger number of bits that the
origin class. For example, if the origin class, for which the
origin matrix is built, is for class 9, the possible target
classes (rows) in the target class matrix is 10 and above. For
practical reasons, it makes sense to use a tighter range of
classes that can be candidates, such as between 4 and 19
classes above the target class (in the class 9 example, this
translates that the target matrix rows are in-between class 13
and class 28). For each row in the target matrix, such as the
class 19 row, the number of occurrences for each of the 496
pairs for that class, are summed and entered in the matrix at
that position. This sum of occurrences is entered in tem of
several divisions, where each division represents a sum of
well defined members within that class, as detailed next
using an example. In FIG. 3, these divisions are suggested
by 313,i.e. O_K_CM_1to O_K_CM_L, where O_K_CM_I
means the sum for members of division I for class CM at pair
K.

Class 19 has 1138 members (of 19 bits). While these class
19 members (target class members) are summed and entered
as a sum in the target matrix (on a few divisions basis), they
must not loose their individuality, so that at decompression
they are fully restored. That is why, in the compressed output
data stream, they are entered as a combination as shown by
314 in FIG. 3, namely comprising of 304 followed by an
index, where the index comprising a counter (as detailed
next).

To explain the above considerations, for non-zero occur-
rences, the above unique ten bit construct (0001_10100_1)
can describe 256 members of class 19 (using an eight bit
counter), at a gain of 1. The original descriptions of these
256 members are released, and when combined with the
original description of other 256 members, produces a gain
of 1 as well. Therefore, 512 members of 1138 (or about 50%,
for simplicity of the discussion) produce a gain of 1, where
256 members are described as shown by 314 in FIGS. 3, and
256 are each described by combining two original descrip-
tions of 19 bits each, resulting in one unique description of
18 bits. When the members have alternate representation,
two consecutive such alternate representations of 19 bits
each where just the last bit changes, (such as in block 205
of FIG. 2, where two nine bit representations are combined
to obtain an eight bit representation) are combined and an 18
bit representation is obtained. When alternate representation
is used, such alternate representation is used for all classes
(origin and target), for the columns that have the entries,
similar to Scheme 1. When no alternate representation is
used, the only difference (and challenge) is to combine two
19 bit class members to obtain a unique equivalent 18 bit
representation. This is a challenge since the two 19 bit
members usually have no correlation. A direct solution to
this challenge is that the 1138 members of the class are by
convention partitioned in consecutive pairs, with the first
member in each pair being represented as described by 314
in FIG. 3, and the second member being described by the
second member original representation with the last bit

US 12,095,485 B2

9

dropped. To avoid conflicts when dropping this last bit (such
as when combining a 15 bit RI with a four bit RI, when the
four bit RI may be in one case 0000 and in another case 0001
and by dropping the last bit in the four bit RI we get 000 in
both cases), such cases will be by default part of a said “by
convention” partition of pairs.

In conclusion, for the non-zero occurrences case, about
50% of class 19 target members provide a gain of 1, while
the other about 50% of members provide zero gain. There
are therefore two divisions of class 19 members in this case,
and one bit is added as cost to choose which of these two
divisions is used.

For the zero occurrences case, the discussion is very
similar. The only difference is that the above unique nine bit
construct (0001_10100) can describe 512 members of class
19 (using a nine bit counter), at a gain of 1, i.e. about 50%
of class 19 members. The other 50% of class 19 members
will provide a gain of 1 by combining the two original
descriptions, using a similar procedure as exemplified above
in the two possible implementations. Similarly, alternate
representations or not, can be used. In this case, there are no
divisions (the entire class provides gain, since all members
are covered).

Since a class 19 member has a 2'° lower probability of
occurrence than a class 9 member, when accounting for all
class 19 members (1138 or about 2'° for simplicity of this
discussion), it is apparent that in an IFDS slice of size
n*16,000 PS where each class 9 member has nominally n
occurrences, there are approximately n total class 19 mem-
bers occurring for that respective pair (column) to which E1
belongs to. Since the non-zero (zero) occurrence case covers
50% (100%) of class 19 members at a gain of 1, it translates
into having about n/2 (n) nominal members that will produce
a gain of 1.

Example

a. For a non-zero occurrences entry and an IFDS slice of
256*16,000PS, and a class 9 E1 on column k at
member M1 having N1 occurrences, where member
M1 targets class 19 as the target class, the compression
condition, in nominal terms, is N1<128-cost, where
cost is 9 bit (to specify matrix column) plus 7 bit (to
specify matrix row) plus 1 bit to specify one division of
512 members (out of the 2 that are possible). This
translates that Scheme 2, as is now, will produce gain
if there is an entry in the 496 by 100 matrix (49,600
possibilities) that has the number of occurrences N1
smaller than 111, when the nominal is 256.

b. For a similar scenario but a zero occurrence entry, the
compression condition becomes “cost<256”, with
cost=16 (9 for the column, 7 for the M1), condition
which obviously is always true. But obviously having
a zero occurrence entry for a slice of 256 average
occurrences has a low probability. The zero occurrence
entry scenario works on a much smaller IFDS slice,
such as a 16%16,000 PS slice, where the probability to
have a zero occurrence entry anywhere in the 49,600
matrix is good. The additional condition is that for the
column where the zero occurrence entry resides, the
target class must have more than 16 occurrences (when
the average is 16), conditions which again has a good
probability.

The probability of Example (a) above is a function of the

IFDS content distribution, being conditioned essentially to
have one entry out of 49,600 possibilities with a minimum

30

35

40

50

65

10

of 110 occurrences from a nominal of 256. This probability
can be further improved, based on the following consider-
ations:

i. The gain produced by the target class is at nominal
value. But the content of the target class in itself is
subject to a distribution, i.e. the 256 nominal content of
class 19 varies.

ii. In the “cost”, one bit is specified that will select one of
the two divisions of 512 class 19 members. The content
of these two divisions in an arbitrary IFDS is subject to
a distribution, and the chosen division is the one that
has the largest content, therefore the largest than the
nominal value of 128.

iii. The one bit part of the “cost” can be extended. For
example, 16 divisions of 64 members each can be
created, out of which eight divisions are chosen as
active. The idea is that nominally, each of the 16
divisions will have 16 members that produce gain, but
since the 16 divisions are automatically subject to a
distribution, the eight divisions with the highest content
will be chosen. The “cost” increases from one bit to
C16_b 8 (combinations of 16 taken 8), which requires
about 14 bits, but if the eight chosen divisions will have
a content of average 19 (instead of the nominal 16),
which has a good probability, then the gain becomes
8%19 (from the eight divisions) minus 14 (the cost to
choose the eight divisions)=138 (that is instead of
8%16-1=127, which would be for the nominal values),
therefore a net gain of 11 out of this technique.

iv. Use a different class as a target class. Any class can be
atarget class. Class 15 is exemplified next. Class 15 has
872 members, and each member has a 16x larger
probability of occurrence than a class 19 member. A
non-zero occurrence case will have 32 members of
class 15 at gain of 1, meaning that there are 28 divisions
to cover all 872 members. Out of these 28 divisions,
one is chosen as active. In the same 256%*16,000 PS
slice, there will be 16*256 members that occur in each
pair (matrix column). Out of these, %5s will produce
gain, i.e. about 144. Five bits will be the cost to specify
one of the 28 divisions, resulting in a nominal net gain
of 139. This nominal gain can be improved with any of
(i.), (ii.), (iii.) above, or extensions and variations of
these. Note that a different target class may produce
different results (139 nominal for class 15 versus 127
nominal for class 19).

Improvements i-to-iv above can be used for the zero-
occurrence entry scenario, with adjustments that are obvious
for the person skilled in the art.

BDCD_s3: BDCD Scheme 3

Scheme 3 is an extension scheme that applies both to
Scheme 1 and Scheme 2 and deals with large groups of same
type bits (either all O or all 1), specifically creating com-
pression gain for such groups. If Scheme 3 is not applied
(maybe the distribution in the IFDS slice does not contain
such groups of same type bits, or for any other reason), the
compression with Scheme 1 or Scheme 2 remains as is.
Scheme 3 enhances the compression and is applied at the
same time as Schemel or Scheme? is applied.

BDCD_s3 works the same for Scheme 1 and Scheme 2,
but differs as a function if the implementation is using the
alternate representation for RI pairs, or not, as disclosed
above. BDCD_s3 is useful in providing compression for
large groups of same type bits, with the magnitude of such
compression being essentially linear with the number of bits
in such groups of same type bits. As disclosed below,
BDCD_s3 can be optimized to compress groups of same

US 12,095,485 B2

11

type bits where this group is of relatively low number of bits
(such as for example 15 or even lower), but the restrictions
increase as this number of bits in such groups gets smaller.
Therefore, it is preferable to employ BDCD_s3 for larger
such groups of bits, such as larger than 25 or 30.

As an overview, when BDCD_s3 is employed, a group of
same type bits that is desired to produce compression must
be included in one of the column of the entries of the
respective scheme (Scheme 1 or Scheme 2), otherwise that
group is not processed (is left as is). The compression gain
produced by that group of same type bits that is included in
an entry column of Scheme 1 or Scheme 2 will increase the
compression gain of the respective scheme. All these aspects
are detailed next. There is a tremendous amount of varia-
tions and optimizations for BDCD_s3 applicable for both
Scheme 1 and Scheme 2—these variations and optimiza-
tions do not change the fundaments of the disclosure, are
apparent to a person skilled in the art, and are not possible
to be outlined entirely in this disclosure due to the amount
of details which are not relevant for the substance of the
disclosure, details that can be easily inferred by a person
skilled in the art. BDCD_s3 is disclosed for Scheme 1 when
implemented with alternate representation, and for Scheme
2 when implemented without alternate representation for RI
pairs, using examples to cover the fundaments. BDCD_s3
works the same for Scheme 1 and Scheme 2 when imple-
mented the other way around, and therefore the disclosure is
covering such obvious variations fully.

BDCD_s3 for Scheme 1 Implemented with Alternate
Representation for RI Pairs

To exemplify, the IFDS slice size that is considered for the
exposition in this disclosure is 256%16,000 PS. The expo-
sition will also exemplify other specific options, such as
when class 9 RI pair is chosen as the contained class for
Scheme 1. In a real implementation, all these options can be
varied dynamically and freezed when compression gain is
obtained.

As mentioned, BDCD_s3 will be disclosed for Scheme 1
when this is implemented using alternate representation of
RI pairs. Since, theoretically, groups of same type bits up to
the size of the IFDS can occur, this alternate representation
can be demanding practically. BDCD_s3 will also address
this demanding representation by limiting this representa-
tion to an upper limit, as disclosed next. Across disclosing
BDCD_s3 for Scheme 1 in the above mentions conditions,
reference will be made to FIG. 4.

A requirement for BDCD_s3 is that the group of same
type bits that is eligible to be compressed must belong to a
pair belonging to one of the columns carrying the said
entries. Such a group is represented by an RI. Since every
entry is an RI pair that belongs to one of the 496 columns,
the RI for said same type bit group is paired with another RI,
where this another RI can be any RI from class 4 to the
theoretical infinity. There are several restrictions related to
this another RI. These are outlined below for a nominal,
theoretical stance. It is noted that multiple variations and
optimizations are possible.

i. This another RI must not be an RI of a same type bit

group that is also considered for compression

ii. It must not be part of part of a specific RI pair class

iii. The lower limit of number of bits in the same type bit

group (i.e. the RI class of this group) is chosen such that
the pair (matrix column) created between the RI rep-
resenting the group of same type bits and the another RI
in the considered pairing range will not contain any
pairs belonging to the part of a specific RI pair class
mentioned at (ii) above.

—_

0

—_

5

20

25

30

65

12

The example provided below exemplifies the restrictions
outlined above, based on mathematical derivations from
data outlined in this disclosure and UPA, and progressively
discloses the embodiments specific to Scheme 3. These
mentioned derivations are not literally presented here, since
they are apparent to a person skilled in the art and the data
presented is sufficient to describe the fundaments of the
disclosure. The discussions are referred to FIG. 4. In FIG. 4,
a matrix is shown, where 402 are the 496 columns repre-
senting the C32_2 pairs that can be formed in a pairing
range. 401 in FIG. 4 signifies the lead RI of a pair, where the
lead RI is the RI from the largest class in that pair. For
example, if a pair is formed between a class 15 R and a class
4 RI on column K, it is entered in the FIG. 4 matrix in the
row labelled 15. The lowest lead RI can be 4 (the lowest RI),
as shown in FIG. 4, where the first row is 4.

a. For a 256%16,000 slice size, the lower limit for a group
of same type bits that meets the above restrictions for
the worst case distribution is 20 (represented by mem-
ber M shown as 403 in FIG. 4). In this case, M=20 is
shown as the lead RI in a pair. This worst case distri-
bution (described below) has a very low probability, but
it is described below because this distribution has a
very important theoretical significance for this part of
the disclosure. While for realistic distributions (the
bulk of distributions) a notably lower than 20 same type
bit group is possible, choosing a lower same type bit
groups, may, for certain distributions, disable any pos-
sible choice of entries in Scheme 1, or introduce
significant restrictions (as shown below) leading to no
possible compression for that respective IFDS slice. On
the other hand, choosing a lower same type bit group
may produce a stronger compression for specific dis-
tributions within the respective IFDS slice, so, a trade-
off is obvious in-between having a stronger compres-
sion or having no compression for slices with specific
unfavourable distribution. Such trade-off criteria are
straight-forward definable to a person skilled in the art,
and are not discussed in this disclosure. Groups of same
type bits of 20 and higher will be exemplified next, just
to show the critical, low probability situation, which is
relevant for the disclosure.

b. In order to implement this compression gain for groups
20 and higher, one class 16 RI pair alternative repre-
sentation is reserved (four units below the RI of 20,
where this number four will become apparent why
chosen as such, below). By reserving this one class 16
representation (shown in FIG. 4 as 404), derivations
show that class 26 and above RI pairs will remain
without representation. Class 26 and above RI pair
class is the specific RI pair class mentioned at (ii) in the
restrictions above, for this example case, as not being
“part of a part of RI classes”. The “part of a part”
formulation is clarified next. Below is disclosed how to
deal with these classes.

c. Class 26 can be formed as pairs of RIs such as 22-4
(4-22), 21-5 (5-21), 20-6 (6-20), 19-7 (7-19), 18-8
(8-18), 17-9 (9-17), 16-10 (10-16), 15-11 (11-15),
14-12 (12-14), and 13-13, where the RI members of
each class (see FIG. 1) are used for these pairs. The
pairs 22-4, 21-5, and 20-6, with their duals, do not exist
(22-4), or have a lead member (21, 20) less, because
groups of same type bits greater or equal than are
treated differently. Starting with lead RI 19 and below,
all members contribute. Similarly can be discussed for
each of classes 27 and above.

US 12,095,485 B2

13

d. In an arbitrary input string, any content (any pair)
occurs, and therefore all pairs must have representation.
Since, by reserving one class 16 RI pair alternative
representation, class 26 and above RI pairs remain
without representation, a solution for these classes to
get representation must be developed. Providing such
solution to get representation for these classes is a key
embodiment of this disclosure for Scheme 3.

e. As mentioned, for a large group of same type bits to be
compressed, this must be on the same column as the
said entries. One said solution to provide representation
for class 26 and above is, to not allow, in that column,
one or more RI classes. For the considered example (20
and above same type bit groups considered for com-
pression in a 256*16,000 IFDS slice), not allowing (or
forbidding) RI class 19 on said column is sufficient to
provide representation for everything else. Forbidding
class 19 RI means that pairs 19-7 (7-19), 19-8 (8-19),
19-9 (9-19) . . . 19-19, and 19-20 (20-19), 19-21
(21-19), these two without the and 21 same type bit
group RI, cannot occur on that column. Clearly, pairs
(22 and greater)-19 cannot exist since (22 and greater)
RIs are only Rls of same type bits.

f. In a slice of 256%16,000, nominally, 24 occurrences of
a class 19 RI can occur. If each of these 24 occurrences,
in the 256%256 pairing ranges of 32 that exist in the
slice, occupy a distinctive position of the 32, means that
24 positions out of 32 cannot form a pair in the original
496 by 100 matrix, which means that the original
496*100 matrix is restricted to 28 by 100, where the 28
columns represent C8_2 (instead of the original
C32_2). That means that both the entries for Scheme 1
and the 20 and greater same type bit group to be
compressed must be on one of these 28 columns of the
restricted matrix. Even a so called lock condition can be
formed, when there are 32 (instead of 24) occurrences
of class 19 RIs in the 256*16,000 slice, and all these 32
occurrences occupy one distinctive position of the 32
positions of the pairing range across the 256%256
pairing ranges in the slice. Note that such distributions,
as exemplified above, have low probability, since such
distributions have been named to distinctively occupy
one position per occurrence in the pairing range. How-
ever, even with less restrictive distributions, the con-
sequence of having a restrictive matrix for the entries is
not desired.

g. There are two solutions to not having such a restrictive
matrix for the entries; one is to have a smaller IFDS
slice, and the other one is to have a larger minimum
same type bit group. For example, if the slice is
64%16,000 (instead of 256*16,000), the worst case
number of forbidden positions in the pairing range
become 6 (instead of 24), and the number of available
columns in the 496 by 100 matrix becomes 325
(C26_2) by 100 instead of 28 by 100. If the same type
bit group is 25 and larger (instead of 20 and larger),
then a 21 bit alternate representation is reserved (in-
stead of the 16 one), 24 and 23 classes of RI are
forbidden from the columns with entries and 25 and
larger same type bit groups to be compressed, which for
a 256*16,000 slice generates no restrictions up to one
position in the 32 pairing ranges corresponding to no
restriction up to 31 restricted columns in the 496 by 100
matrix (i.e. 465 columns are unrestricted). Doing even
higher that 25 and larger groups reduces the probability
of having these 31 restricted columns further.

15

20

25

40

45

60

65

14

h. The real value of Scheme 3 is to provide means to
efficiently compress groups of large number of bits
(such as greater than 30), and to simplify and limit the
possible pairs of RIs (which without Scheme 3 would
extend to a theoretical infinity), so, considering com-
pressing groups of same type bits smaller than 30 is of
little value unless for a small number of unique distri-
butions within the considered IFDS slice. The theoreti-
cal perspective described above covers full disclosure
of the situations in such cases.

i. In FIG. 4, any forbidden columns in the 496 by 100
matrix, as described above, are symbolically shown as
line 408.

j. Given that all 20 and larger same type bit RI are part of

compression according to BDCD_s3 but up to class 21
RI pairs there are other RI than the same type bit RI, the
last pair that can exist when BDCD_s3 is applied is pair
class 42 (resulting from pairing two class 21 Rls). If the
RI for the minimum same type bit group considered for
compression would be greater than 21 (such as 25),
then the last pair that can exist would be double that RI
(such as 50).

k. Considering, as described above, that a number of
columns in the matrix of FIG. 4 are forbidden and that
the non-forbidden column K as shown in FIG. 4 is the
chosen column for the entries of Scheme 1, then on this
column, the 16 bit reserved representation is repre-
sented by code <C> indicated by 405 in FIG. 4. Using
this code <C>, all the pairs containing a group (RI) of
20 same type bit and larger are formatted as 406 in FIG.
4. The said such formatted pairs are symbolically
shown as line 407 in FIG. 4 with arrow 410 showing
that the 406 formatting describes such formatted pairs.
Arrow 408 in FIG. 4 symbolizes that the code <C> and
the forbidden columns are related, code <C> condi-
tioning these columns. The formatting details are:
<16 bit reserved representation><1 bit><variable bit>

is represented by 406 in FIG. 4

<16 bit reserved representation>—as detailed at (b)
above, is the code <C> in FIG. 4

<1 bit_1><1 bit_2><variable bit> is <var> part of
406 in FIG. 4, where:

<1 bit>—a value of 0 (1) indicates that the same type
bit group is the first (second) position in the
considered pair, such as position 5 (position 27) in
the 5-27 pair (column).

<variable bit> is used to describe what is the group
of same type bit, such as:
00->20 bits of same type—gain 1
01->21 bits of same type—gain 2
10->22 bits of same type—gain 3
11_00->23 bits of same type—gain 2
11_01->24 bits of same type—gain 3
11_10->25 bits of same type—gain 4
11_11_000->26 bits of same type—gain 2

11_11_110->32 bits of same type—gain 8

11_11_111<7 bits>->33-t0-160 bits of same
type—gain 2-t0-128

11_11_111<seven 1s> <128 bits>->161-t0-2'%7
bits of same type—gain 2-to-2'>*

i. The RI for the group that creates a pair with the RI for
the groups of same type bits formatted as disclosed at
(k) above will be written in raw form in the output
immediately after the format detailed at (k) above.

US 12,095,485 B2

15

As mentioned, a tremendous amount of variations of the
disclosed embodiments are possible, obvious to a person
skilled in the art.

BDCD_s3 for Scheme 2 Implemented without Alternate
Representation of RI Pairs

The implementation without alternate representation of
RI pairs features entirely the same concepts as the imple-
mentation with alternate representation, disclosed above, the
differences being only in some implementation details.
BDCD_s3 for Scheme 2 is disclosed for the implementation
without alternate representation of RI pairs (called for the
rest of the disclosure, for simplicity S3S2) in order to outline
said differences and fully disclose the implementation in
both cases. There is no restriction to implement BDCD_s3
for Scheme 2 with the alternate representation of RI pairs, in
this case the implementation procedure described above for
Scheme 1 being applied. Similarly as above, for the
BDCD_s3 for Scheme 1 implemented with alternate repre-
sentation for RI pairs (called for the rest of the disclosure as
S3S1 for simplicity), there is a tremendous amount of
variations and optimizations that are possible, and similarly,
only the fundaments are described in this disclosure, for the
same reasons as mentioned above. Similarly, a worst case
example will be used.

A similar derivation for a lowest same type bit group that
would satisfy a lock condition will give, in similar condi-
tions as above, a size of 22. The lock condition is, similarly,
a low probability condition, and similarly as above, multiple
trade-offs can be made between the probability of having a
distribution subject to a lock condition (that would render an
IFDS slice not to compress) and a bulk (high probability)
distribution subject to a lower than 22 same type bit group
that will compress. These trade-offs are apparent to a person
skilled in the art, and will not be detailed here.

The theoretical steps for S3S2, in a parallel with S3S1 (to
insure appropriate comparison and understanding) are:

1) For a 256%16,000 slice size, the lower limit for a group
of same type bits that meets similar restrictions as for
S3S1 for the worst case distribution is 22. Similarly,
this worst case distribution (described below) has a low
probability. All other considerations are similar as
described at S3S1. Differences for S3S2 for groups of
same type bits of 22 and higher will be exemplified
next.

2) In order to implement this compression gain for groups
22 and higher, the RI of four units below the chosen
number (22-4=18) for the same type bit group (i.e. the
RI for the 18 same type bit group) is reserved. Note the
first major difference between an implementation with
alternate representation (S3S1) and one without
(S3S2). For the one with, a specific RI pair is reserved,
while for the one without, a specific single RI is
reserved. The consequences of this difference will
become apparent below, as the disclosure continues. By
reserving this class 18 RI, all groups of 18 same type
bits that show up in the IFDS slice will remain without
representation. How to deal with this situation is dis-
closed below.

3) The reserved RI of class 18 mentioned above will be
paired with another RI which can be of any class, from
class 4 to infinity. Coding such pair is specific, and
consists in the reserved class 18 RI followed by an
index representing the other. RI, where the number of
bits in the index must be the same as the number of bits
in the other RI, and where the index must cover all
other possible Rls in such a pair such that the gain/loss
after coding such pair is zero. A straightforward deri-

—_

5

20

w

0

40

65

16

vation in coding such pair in accordance to the above
will show that, in the pair, the class 18 RI must be
avoided to be paired with all class 4 RIs (five of them)
and six out of 10 class 5 RlIs. All other pairs between
the reserved class 18 RI and the other RI when this
other RI is indexed, as described above, for the remain-
ing four out of 10 class 5 RI and all class 6 RI and
above, can be coded in accordance to the above
remarks and conditions.

4) While the above solution is implementable, forbidding
the reserved class 18 RI to pair with class 4 RIs and six
of the class 5 Rls is not practical, because in a pair
(column) of the 496 by 100 matrix, for a practical IFDS
slice size, it is practically impossible not to have a class
4 or a class 5 RI. Therefore the practical solution is,
similar to S3S1, to forbid the columns with entries and
same type bit groups to be compressed from having
occurrences of 18 same type bit groups.

5) Given the above conclusion, in the subject IFDS slice
(256*16,000), the reserved class 18 RI nominally
occurs sixteen times. That is equivalent to the said
number of occurrences of the said forbidden RI pair
class for S3S1. Similarly, that will leave a theoretical
worst condition space of 16 to work with in the pairing
range, and a space of C16_2 by 100 (120 by 100) for
the said entries in the said matrix. Similar trade-offs and
notes as described for S3S1 exist. To give the same
additional example as in S3S1, reducing the slice size
to 64*%16,000, will forbid 4 of the 32 positions in the
pairing range and 118 columns in the 486 by 100 matrix
(having 378 by 100 available for choice of entries and
22 and greater same type bit groups). Similarly,
increasing by five the same type bit group (27 instead
of 22, as for S3S1 was 25 instead of 20), leads to a 50%
probability (for the 256%16,000 slice) to have the
theoretical one out of 32 positions to be forbidden and
therefore 31 columns forbidden in the 496 by 100
matrix.

6) The coding format for groups larger or equal than 22
bits of same type, follows the same format and rules as
for S3S1. All considerations and notes mentioned
above hold as well.

a. <18 bit reserved RI><1 bit><variable bit>

i. <18 bit reserved RI>—as detailed at (2) above

ii. <1 bit>—a value of 0 (1) will indicate that the
same type bit group is the first (second) position in
the considered pair, such as position 5 (position
27) in the 5-27 pair.

iii. <variable bit> is used to describe what is the
group of same type bit, such as:
1. 00->22 bits of same type—gain 1
2. 01->23 bits of same type— gain 2
3. 10->24 bits of same type—gain 3
4. 11_00->25 bits of same type—gain 2
5. 11_01->26 bits of same type—gain 3
6. 11_10->27 bits of same, type—gain 4
7. 11_11_000->28 bits of same type—gain 2

8

9

1

. 11_11_110->34 bits of same type—gain 8
0. 11_11_111<7 bits>->35-t0-162 bits of same
type—gain 2-to-128
11. 11_11_111<seven 1s> <128 bits>->163-to-
2'28 bits of same type—gain 2-to-22*
7) Similarly, the RI in the pair with this group of same
type bits is written in the output, in raw format, after the
format of the group, described at (6) above.

US 12,095,485 B2

17

Similarly to S3S1, a tremendous amount of variations of
the disclosed embodiments are possible, obvious to a person
skilled in the art. In conclusion when implementing
BDCD_s3 without alternate representations, the key differ-
ences from the implementation with alternate representa-
tions, are:

A specific single Rl is reserved, versus a specific alternate

representation of an RI pair.

The forbidden columns in the entries matrix are based on
forbidding all pairs that contain that specific reserved
single RI only, versus forbidding all pairs of one or
more well defined RI classes.

BDCD_s4: BDCD Scheme 4

Scheme 4 is another extension scheme that applies both to
Scheme 1 and Scheme 2 and deals with specific optimiza-
tions to extend the scope of Scheme 1 and Scheme 2.
BDCD_s4 for Scheme 1

An important limitation of Scheme 1 is that the three
entries must be on the same matrix column (belonging to the
same one of the 496 pairs in the considered example).
Scheme 4 eliminates this limitation, such that for example
entry 1 will represent pair 34 member 3, entry 2 will
represent pair 201 member 47, and entry 3 will represent
pair 446 member 97. In comparison, discussing the same
example, Scheme 1 would have required that the three
members of the three entries, member 3, 47, and 97, belong
all to pair 201 for example. The notable difference between
Schemel and Scheme 4 becomes apparent, respectively for
Scheme 1 three out of 100 entries with 496 versions can
meet the compression condition, while for Scheme 4 three
out 0of 49,600 entries (single version) can meet the compres-
sion condition. Clearly, the probability to meet three out of
49,600 is larger than to meet three out of 100 with 496
versions. The great advantage of BDCD_s4 is that two
absolute minimums in the 49,600 entries matrix and one
absolute maximum in the 49,600 matrix are enabled to be
used. The discussion above is exemplified for class 9 RI pair.
For larger RI pair classes, such as class 10, or class 11, the
difference between Scheme 1 and Scheme 4 increases as the
RI pair class order increases, in Scheme 4 favour. Scheme 1
implemented with alternate representation of pairs is used
below, for continuity of the disclosure exposition. As men-
tioned, Scheme 1 can be used without alternate representa-
tion, and Scheme 4 has no restrictions from that point of
view. In fact, BDCD_s4 for Scheme 2 will be disclosed for
the without representation implementation.

To implement Scheme 4, the following example is dis-
cussed. FIG. 5 is used as a visual aid to better understand the
disclosed embodiments. In FIG. 5, the 496 (columns 502) by
100 (rows 501) matrix is shown. In the description, the
following convention is used: member x of pair y for RI pair
class z will be called x-y-z. Therefore, entry 1 (x1-y1-9) and
entry 2 (x2-y2-9) are the two entries with minimum occur-
rences, and entry 3 (x3-y3-9) is the entry with maximum
occurrences. If x1yl1_9 (503 in FIG. 5) is the alternate
representation of entry 1, x1y1_9_0 (506 in FIG. 5, where a
zero is added to the 9 bit representation) will be used to
represent entry 1 occurrences at a loss of 1 bit per occur-
rence. x1y1_9_1 (508 in FIG. 5) will be used to represent the
same order class 10 RI pair alternate representation, be that
called x1y1_9_10 (509 in FIG. 5), releasing it. There is no
gain or loss by this x1y1_9_1 to x1y1_9_10 swap. Repre-
senting a class 9 originated representation (x1y1_9_1) with
a class 10 representation (x1yl_9_10) is possible and
insures a unique correspondence because class 10 has more
members than class 9 (220 vs. 100). Similarly for entry 2,
x2y2_90 (507 in FIG. 5) will represent entry 2 occurrences

20

25

40

45

60

65

18

at a loss of 1 bit per occurrence, and x2y2_9_1 (510 in FIG.
5) will swap x2y2_9_10 (511 in FIG. 5) at no gain or loss,
releasing x2y2_9_10. For entry 3 (x3y3), the following
applies. x3y3, just like x1y1 and x2y2, is represented by 9
bits, with the format <8 bits>_0 or <8 bits>_1, where <8
bits> is a given, fixed 8 bit configuration. Say in this
example that x3y3 is represented by <8 bits>_0, or <8b>_0
(512 in FIG. 5). In order to provide a gain of 1 for every
occurrence of x3y3, the goal is to represent x3y3 by the
<8b> configuration only. Since x3y3 is represented by
<®b>_0, that means that <8b>_1 must be released, so that
<8b>_0 combined with <8b>_1 creates <8b>. The <8b>_1
(513 in FIG. 5) is the neighbour pair (column), on the same
member to <8b>_0 with the alternate representation having
only the last bit different. In order to release <8b>_1, the
available 10 bit representations x1y1_9_10 and x2y2_9_10
will be combined to generate a unique 9 bit representation
that will represent all the occurrences of the original
<8b>_1, releasing <8b>_1 (this block is shown in FIG. 5 by
<8b>_1_0 (515 in FIG. 5) being swapped by the available
x2y2_9_10and <8b>_1_1 (514 in FIG. 5) being swapped by
the available <x1yl1>_9_10, releasing both <8b>_1_0 and
<8b>_1_1, therefore by combining now both the available
<8b>_1_0 and <8b>1_1 creates the unique 9 bit represen-
tation to represent the original <8b>_1 occurrences making
the original <8b>_1 to be available). Combining <8b>_0
with the available <8b>_1, makes <8b>_0 to be uniquely
represented by <8b> (516 in FIG. 5), the target 8 bit
representation. Accordingly entry 1, entry 2, and entry 3 are
decoupled to be anywhere in the 49,600 entries matrix,
while still keeping the same compression condition N3>N1+
N2+cost. The cost however increases, and now consists in
specifying the column and member for each of the three
entries, i.e. 3*(9+7)=48 bits. Because of this cost, BDCD_s4
will start working for IFDS slices starting with 32*16,000,
but 16¥16,000 can be possible if an entry in the 49,600
matrix has more than (48 plus x1-y1_9 plus x2-y2_9 occur-
rences) occurrences.

A vparticular case is when there is an entry of zero
occurrences in the matrix. In this case, only the zero occur-
rence entry and the maximum occurrence entry are needed.
The cost is 2%(9+7)=32 bits. In this case, the scheme will
work fairly common for a minimum IFDS slice of 16*16,
000, but a slice of 8%16,000 can work if an entry in the
49,600 matrix has more that 32 occurrences.

BDCD_s4 for Scheme 2

For Scheme 2, the limiting characteristic is that the entry
in the origin class and the target class must be on the same
matrix column. Similarly as for BDCD_s4 for Scheme 1,
this limitation is eliminated, i.e. the entry for the origin class
can be on one column and the target class can be on another
column, with the benefits similar as described for BDCD_s4
for Scheme 1.

To use a similar example as discussed when Scheme 1
was disclosed above, same 0001_10100 member (discussed
at Scheme 2 disclosure) is discussed in the zero and non-zero
occurrence scenarios.

In the zero occurrences scenario, the 0001_10100 9 bit
member configuration on column (pair) 4 becomes available
for use towards a target class such as class 19. But the class
19 target class has maximum occurrences on column (pair)
201. In order to make the 0001_10100 (called M1) available
configuration to work on column 201, the following proce-
dure applies. The M1 occurrences on column 201 will be
moved in the same position as on column 201 on column 4,
being represented by the available configuration
0001_10100. The implementing hardware or software will

US 12,095,485 B2

19

see members M1 on column 4 and will know that these are
occurrences from column 201, and in fact on the respective
position, in column 4, are the next configurations repre-
sented in the string. This way, the M1 configuration becomes
available on column 201, and is used for the target class, as
described at BDCD_s2.

In the non-zero occurrence scenario, 0001_10100_0 (10
bit) configuration will be used to describe the M1 occur-
rences on column 4 at a loss of 1 bit per occurrence. The
0001_10100_1 becomes available and it will be used to
describe the same order class 10 occurrences on column 4
(be the representation for these called M1_10 for the sim-
plicity of this discussion). The original M1_10 representa-
tion on column 4 becomes available to be used towards the
occurrences of a target class, such as class 19 target class.
However, similarly as discussed above, class 19 target class
has the maximum occurrences on a different column (pair)
such as column 201. Similarly as above, the M1_10 occur-
rences on column 201 will be moved in the same position as
on column 201 on column 4. The implementing hardware or
software will see members M1_10 on column 4 and will
know that these are occurrences from column 201, and in
fact on the respective position, in column 4, are the next
configurations in the string. This way, the M1_10 configu-
ration becomes available on column 201, and is used for the
target class, as described at BDCD_s2.

When a known target class is always used, the cost for
BDCD_s4 for Scheme 2 is, for zero occurrences, (column
plus row specification for origin class) plus (column for
target class). For class 9 that is 25 bits. If the target class is
customizable, a few extra bits (say three bits for the choice
option of eight target classes) plus possibly maximum three
bits to choose a segment in a target class (as disclosed above)
can be added. Therefore, the cost can be in-between 25 and
31 bits. That makes a 16¥16,000 slice size a good probability
and performance choice.

For non-zero occurrences, the cost increases with 1 bit for
every occurrence of the consider entry in the origin class.

Similar considerations/improvements as disclosed at
BDCD_s4 for Scheme 1 are applied here for both zero and
non-zero occurrences. And similarly, multiple variations,
optimizations, and scenarios can be developed and are
obvious for a person skilled in the art, and these do not
represent a limitation of this disclosure.

Four schemes and multiple options to create compression
gain have been disclosed. In an implementation, the scheme/
option scenario that provides the largest gain is chosen. The
choice of scheme/option scenario is not necessarily a sole
function on the gain value, but, dependent on the application
as well. For example, applications such as audio telephony
requires low latency in the audio stream which, applied to
the present disclosure, would have the consequence of
requiring small IFDS slices. One option to reduce the IFDS
slice size for such applications, for this disclosure, is to
employ default pairing schemes where cost to specify the
said entries is eliminated, the cost in these default pairing
cases being only a header to specify one of the possible
default pairing schemes. As disclosed, BDCD_s2 is more
suitable for small IFDS slices, but BDCD_s1 is appropriate
for such a goal as well, when implementing entries with zero
occurrences.

To conclude the disclosure, the data flow according to the
disclosed embodiments is summarised in FIG. 6. The arbi-
trary input data string, IFDS, (601 in FIG. 6) is formatted
(the 602 step in FIG. 6), where this formatting step com-
prising fully describing said IFDS using a set of well defined
binary constructs. The formatted data string is processed

20

25

40

45

60

65

20

(step 603 in FIG. 6), where this processing step comprising
one or a combination of the disclosed schemes 1-to-4,
specifically creating the set of well defined binary elements,
the pairing ranges, partitioning the said IFDS in slices,
characterizing the content of the said IFDS slices in term of
occurring binary structures such as binary constructs and
binary elements, creating the applicable matrixes, identify-
ing the applicable sets of binary constructs, elements, and
target classes. Based on the processed IFDS, an output is
generated at step 604 in FIG. 6, where the generated output
features compressed data, therefore a number of bits smaller
than the input IFDS. The generated output may have the
same number of bits as the input in cases when the processed
and formatted IFDS does not meet any compression condi-
tions for neither of Schemes 1-to-4 and none of their options.
The generated output is subject to the testing step 605 in
FIG. 6, where generally the testing step is testing if the
number of bits in the generated output is smaller than a
compression target or is smaller than a floor size below
which compression may not have the desired efficiency. If
the testing is not met, path 606 in FIG. 6 is followed, and the
generated output is fed back at the input 601 for a new
compression cycle. Any number of such cycles are possible.
If the testing is met, path 607 in FIG. 6 is followed and the
compressed data is ready for use (608 in FIG. 6).
From reading the present disclosure, other variations and
modifications will be apparent to the skilled person. Such
variations and modifications may involve equivalent and
other features which are already known in the art or are
implied by the embodiments presented in this disclosure.
Such variations and modifications may increase the perfor-
mance of the BDCD method, such as may increase the
compression/decompression efficiency or speed.
Although the appended claims are directed to particular
combinations of features, it should be understood that the
scope of the disclosure of the present invention also includes
any novel feature or any novel combination of features
disclosed herein either explicitly or implicitly or any gen-
eralisation thereof, whether or not it relates to the same
invention as presently claimed in any claim and whether or
not it mitigates any or all of the same technical problems as
does the present invention.
Features which are described in the context of separate
embodiments may also be provided in combination in a
single embodiment. Conversely, various features which are,
for brevity, described in the context of a single embodiment,
may also be provided separately or in any suitable sub-
combination. The applicant hereby gives notice that new
claims may be formulated to such features and/or combina-
tions of such features during the prosecution of the present
application or of any further application derived therefrom.
For the sake of completeness it is also stated that the term
“comprising” does not exclude other elements or steps, the
term “a” or “an” does not exclude a plurality, and reference
signs in the claims shall not be construed as limiting the
scope of the claims.
The invention claimed is:
1. A method comprising:
developing a set of well defined binary constructs com-
prising a finite number of subsets of said binary con-
structs wherein each of said subsets has a finite number
of members of a same number of bits, and wherein the
members of every subset has a different number of bits;

describing any arbitrary binary input string using said set
of well defined binary constructs;

creating a well defined set of binary elements wherein

said binary elements comprise of all possible groupings

US 12,095,485 B2

21

of well defined number of members of said set of binary
constructs, wherein said number of members is two or
more, and wherein said set of binary elements com-
prising a finite number of subsets of said binary ele-
ments wherein each of said subsets has a finite number
of members of a same number of hits, and wherein the

22

considered elements, wherein said specifics is a char-
acteristic of said considered elements such as said
specific number of occurrences, and wherein said gen-
erating requires well defined processing of said trans-
formed identified binary elements.

4. The method of claim 3 wherein said generated output

has a number of bits that is smaller than the number of bits
in said input string that corresponds to said multiple suc-
cessive groups for which said output is generated.

members of every subset has a different number of bits;
processing said binary string in order to create variability
and distributions in term of binary constructs and

transformed into a unique equivalent format, wherein

binary elements that occur within said string or a well 10 5. The method of claim 2 further comprising:
defined segment of said string and wherein said vari- developing a second matrix of size x by z, wherein x are
ability and distribution is assessed with respect to a the matrix columns and z are the matrix rows, wherein
nominal base that is defined based on well defined X is the same as in said first matrix and z is a number
mathematical and statistical criteria; and that is equal to the number of all said subsets of binary
wherein said processing is generating data compression. 15 elements that have the number of bits larger than the
2. The method of claim 1 wherein said processing com- number of bits of the subset of binary elements con-
prising: sidered in said first matrix, wherein for each of said
partitioning said described binary input string into suc- subset from said number of subsets, all binary elements
cessive groups of said binary constructs wherein each of that subset that occurs within each said successive
of said successive groups have same well defined 20 group are summed for each of said exhaustive combi-
number of positions wherein each position is taken by nation represented by an x column value and entered in
one of said binary constructs; that corresponding position of said second matrix;
tabulating all said binary elements belonging to one of summing all said binary elements of each of said corre-
said subsets of binary elements, when said binary sponding positions of said second matrix for multiple
elements result from exhaustive combinations of binary 25 successive groups wherein said multiple represents a
constructs from all said positions belonging to each of number that is decided based on well defined criteria,
said successive groups, wherein said exhaustive com- and wherein said summing generates a specific number
plies mathematical relationships such as combinations of occurrences for each of said corresponding position
of k taken m, wherein k represents the said number of in the said second matrix;
said positions in a said successive group and m repre- 30 identifying one or more of said corresponding positions of
sents the said number of members used in the group- specific characteristics in said second matrix wherein
ings of said binary elements, wherein said tabulating said identifying is performed to meet a well defined
generates a first matrix of size x by y wherein x are the criteria wherein said criteria is defined as standalone for
matrix columns and y are the matrix rows, with x being a said corresponding position or is defined as a rela-
the number of said exhaustive combinations and y 35 tionship between two up to all of said corresponding
being the number of distinctive said binary elements of positions in said second matrix;
said subset for which said tabulation is performed; wherein said identified binary elements of said first matrix
summing all said tabulated binary elements for multiple and said binary elements of said identified correspond-
successive groups, wherein said summing occurs for ing positions of said second matrix as well as all said
each position in said first matrix, wherein said multiple 40 binary elements of same said exhaustive combination
represents a number that is decided based on well represented by a column X in said first matrix or said
defined criteria, and wherein said summing generates a second matrix as said identified binary elements and
specific number of occurrences for each of said position identified binary constructs, in all said successive
in the said first matrix; groups, no matter to which of said subset of binary
identifying one or more of said tabulated and summed 45 elements they belong to, may or may not be trans-
binary elements of specific characteristics in said first formed into a unique equivalent format wherein said
matrix wherein said identifying is performed to meet a equivalent means that the number of bits of every said
well defined criteria wherein said criteria is defined as binary element is preserved, wherein said may means
standalone for a said identified binary element or is that are all transformed and said may not means none
defined as a relationship between two up to all of said 50 is transformed;
binary elements in said first matrix; and wherein one or more of said identified binary elements of
wherein said identified elements are used to generate data said first matrix and one or more of said identified
compression. corresponding positions of said second matrix compris-
3. The method of claim 2 further comprising: ing a well defined mathematical or statistical relation-
said identified binary elements of said first matrix as well 55 ship between specifics of said elements and said posi-
as all said binary elements of same said exhaustive tions, wherein said specifics is a characteristic of said
combination represented by a column x in said first elements and said positions such as said specific num-
matrix as said identified binary elements in all said ber of occurrences; and
successive groups, no matter to which of said subset of wherein an output is generated based on well defined
binary elements they belong to, may or may not be 60 processing of said elements and said positions.

6. The method of claim 5 wherein said generated output

has a number of bits that is smaller than the number of bits
in said input string that corresponds to said multiple suc-
cessive groups for which said output is generated.
7. The method of claim 3 further comprising:
binary constructs representing groups with a number of
bits larger than a well defined number, called special

said equivalent means that the number of bits of every
said binary element is preserved, wherein said may
means that are all transformed and said may not means
none is transformed; and 65
generating an output based on a well defined mathemati-
cal or statistical relationship between specifics of said

US 12,095,485 B2

23

groups, are specially processed, and where the location
of such special groups is identified in connection to said
identified binary elements;

wherein said specially processing comprising reserving a
well defined said binary element;

wherein said reserved binary element is used to specially
describe said special groups;

wherein a said identified binary element is active when
any one of a limited number of well defined binary
elements does not occur in any one of said multiple
successive groups on the same said exhaustive combi-
nation represented by an x column value in said first
matrix as the said identified binary element; and

wherein said specially describing said special groups
generates a final output string featuring compression
gain.

8. The method of claim 5, further comprising:

binary constructs representing groups of bits with a num-
ber of bits larger than a well defined number, called
special groups, are specially processed and where the
location of such special groups is identified in connec-
tion to said identified binary elements;

wherein said specially processing comprising reserving a
well defined binary construct;

wherein said reserved binary construct is used to specially
describe said special groups;

wherein a said identified binary element or a said corre-
sponding position is active when any one of a limited
number of well defined binary elements does not occur
in any one of said multiple successive groups on the
same said exhaustive combination represented by an x
column value in the said first or second matrix as the
said identified binary element or said corresponding
position; and

wherein said specially describing said special groups
generates a final output string featuring compression
gain.

9. The method of claim 3 wherein said well defined

processing of said identified binary elements comprising:

a well defined number of said identified binary elements
out of which a well defined number has low number of
occurrences and another well defined number has high
number of occurrences, wherein each corresponds to
one position in said first matrix and being represented
by a unique code of same number of bits;

wherein said elements of low number of occurrences are
represented by adding a well defined suffix after their
said code and wherein their code followed by another
well defined suffix are processed to enable a unique
identifiable binary structure of a number of bits smaller
than the number of bits of the said element of high
number of occurrences wherein said unique identifiable
structure replaces to represent said element of high
number of occurrences; and

wherein the cost associated with representing the ele-
ments of low occurrences plus the cost associated to
specifying the location in the said first matrix of the
said well defined number of the said identified binary
elements is smaller than the gain associated with rep-
resenting the said elements of high occurrences by said
unique identifiable binary structure.

10. The method of claim 5 wherein said well defined

processing of said elements and said corresponding posi-
tions comprising:

a well defined number of said identified binary elements
of said first matrix has low number of occurrences and
another well defined number of said corresponding

20

25

30

40

45

55

60

65

24

positions has high number of occurrences, wherein said
elements have the same number of bits and said posi-
tions have a larger number of bits than said elements;

wherein said elements are represented by adding a suffix
after their said code and wherein their code followed by
another suffix are processed to enable a unique identi-
fiable binary structure that is used to represent the said
corresponding position of high number of occurrences
with a number of bits that is smaller than the number of
bits of said corresponding position, wherein the differ-
ence in the number of bits between said structure and
said position determines how many of the elements of
said position can be represented with said binary struc-
ture, wherein the ratio between the number of elements
that can be represented and the total number of ele-
ments in said position gives the percentage of high
occurrences that produce gain; and

wherein the cost associated with representing the ele-
ments of low occurrences plus the cost associated to
specifying the location in the said first matrix of the
said elements and to specify the location in said second
matrix of said positions is smaller than the gain given
by the percentage of high occurrences that produce
gain.

11. The method of claim 7 wherein said reserved binary

element is used to specially describe said special groups,
comprising:

said reserved element is used together with well defined
headers to equivalently describe said special groups,
wherein said special groups represent groups of bits of
same type;

wherein the number of bits in said special groups minus
the number of bits in said reserved element together
with the number of bits in said headers, create a
difference wherein said difference is greater than zero
and in special cases equal to zero;

wherein said difference increases as the number of bits in
said special groups increases;

wherein said difference represents the compression gain;
and

wherein to compensate for the said reserved element,
specific well defined binary elements must be avoided
from being used, wherein the said avoiding process is
implemented by controlling and deciding which binary
elements are said identified so that conflict with said
avoided binary elements is eliminated, wherein said
conflict means that a said identified binary element and
a said to be avoided binary element are on the same said
x column of said first matrix or a well defined relation-
ship between their columns in said matrix exist.

12. The method of claim 8 wherein said reserved binary

construct is used to specially describe said special groups,
comprising:

said reserved binary construct is used together with well
defined headers to equivalently describe said special
groups, wherein said special groups represent groups of
bits of same type;

wherein the number of bits in said special groups minus
the number of bits in said reserved binary construct
together with the number of bits in said headers, create
a difference wherein said difference is greater than zero
and in special cases equal to zero;

wherein said difference increases as the number of bits in
said special groups increases;

wherein said difference represents compression gain; and

wherein to compensate for the said reserved binary con-
struct, specific well defined binary elements where said

US 12,095,485 B2

25

binary construct is part of must be avoided from being
used, wherein the said avoiding process is implemented
by controlling and deciding which binary elements or
corresponding positions are said identified so that con-
flict with said avoided binary elements is eliminated,
wherein said conflict means that a said identified binary
element or corresponding position and a said to be
avoided binary element are on the same said x column
of said first matrix or of said second matrix or a well
defined relationship between their columns in said
matrixes exist.
13. The method of claim 7 wherein the process is repeated
in a loop by feeding the said final output string back as a said
input string.
14. The method of claim 8 wherein the process is repeated
in a loop by feeding the said final output string back as a said
input string.
15. A method wherein a finite set of binary constructs is
being developed to describe any arbitrary input binary
string, wherein exhaustive groupings of said constructs
belonging to said finite set create a finite set of grouping
elements, wherein these grouping elements generate distri-
butions of occurrences within a well determined segment of
said input string wherein said distributions are a function of
the binary constructs content of said segment of said input
string, wherein within said distributions grouping elements
of low occurrences and of high occurrences are located, and
wherein these located grouping elements are processed
based on mathematical and statistical procedures to create
compression gain.
16. The method of claim 15, wherein one of said grouping
elements or one of said binary constructs is reserved and
used to model for compression well defined content of said
input string, wherein to compensate for the use of said
reserved element or construct, specific well defined group-
ing elements must be avoided from being used, wherein the
said avoiding process is implemented by controlling and
deciding which grouping elements of low occurrences and
of high occurrences are located within said distributions so
that conflict with said avoided grouping elements is elimi-
nated, wherein said conflict means any relationship between
said well defined content of said input string or said group-
ing elements of low occurrences and of high occurrences
and said avoided grouping elements.
17. A binary data compression/decompression method,
wherein any input binary data string (IFDS) is uniquely and
reversibly compressed/decompressed without any data loss,
comprising:
uniquely formatting and fully describing the IFDS using
a set of well defined binary constructs;

creating complex structures from custom combinations of
said binary constructs that occur within the arbitrary
IFDS content wherein the choice of the said custom
combinations depend on the said IFDS content in term
of binary constructs, therefore creating IFDS content
variations and distributions from an expected nominal
base, wherein said variations and distributions reflect
the actual content of the arbitrary IFDS;

uniquely processing these variations and distributions in

content using several schemes wherein each scheme
brings a unique compression feature; and

wherein once this processing completes, i.e. the end of the

arbitrary IFDS is reached, it is called that the end of one
compression cycle is reached, and wherein another
compression cycle can be applied to the data by repeat-

20

30

40

45

50

26

ing the cycle steps, and wherein such compression
cycles are repeated until the desired compressed file is
reached or until a file floor size limit is reached, floor
size below which the disclosed compression has limi-
tations.

18. The method of claim 5 wherein said summed specific
number of occurrences for each of said corresponding
positions in said second matrix is divided in a well defined
number of intervals, wherein each interval represents a well
defined number of said binary elements of one said subset
characterized by a well defined number of bits, wherein said
number of intervals depend on the said identified elements
with which the said corresponding position that is divided is
in said relationship, and wherein each of said intervals is
selectable for use during the said processing to generate said
output for optimized target performances.

19. The method of claim 5 wherein said well defined
processing of said elements and said corresponding posi-
tions comprising:

a well defined number of said identified binary elements
of said first matrix has zero number of occurrences and
another well defined number of said corresponding
positions has high number of occurrences, wherein said
elements have the same number of bits and said posi-
tions have a larger number of bits than said elements;

wherein the representation, or code, of said elements of
zero number of occurrences is used as a unique iden-
tifiable binary structure that is used to represent the said
corresponding position of high number of occurrences
with a number of bits that is smaller than the number of
bits of said corresponding position, wherein the differ-
ence in the number of bits between said structure and
said position determines how many of the elements of
said position can be represented with said binary struc-
ture, wherein the ratio between the number of elements
that can be represented and the total number of ele-
ments in said position gives the percentage of high
occurrences that produce gain; and

wherein the cost associated with specifying the location in
the said first matrix of the said elements and to specify
the location in said second matrix of said positions is
smaller than the gain given by the percentage of high
occurrences that produce gain.

20. The method of claim 3 wherein said well defined

processing of said identified binary elements comprising:

a well defined number of said identified binary elements
out of which a well defined number has zero number of
occurrences and another well defined number has high
number of occurrences, wherein each corresponds to
one position in said first matrix and being represented
by a unique code of same number of bits;

wherein the representation, or code, of said elements of
zero number of occurrences is used as a unique iden-
tifiable binary structure of a number of bits smaller than
the number of bits of the said element of high number
of occurrences wherein said unique identifiable struc-
ture replaces to represent said element of high number
of occurrences; and

wherein the cost associated with specifying the location in
the said first matrix of the said well defined number of
the said identified binary elements is smaller than the
gain associated with representing the said elements of
high occurrences by said unique identifiable binary
structure.

