a2 United States Patent

Secareanu

US011677416B2

a0y Patent No.: US 11,677,416 B2

45) Date of Patent: Jun. 13, 2023

(54)

(71)

(72)

(73)

(*)

1)

(22)

(65)

(60)

(1)

(52)

(58)

HARDWARE IMPLEMENTABLE DATA
COMPRESSION/DECOMPRESSION
ALGORITHM

Applicant: Radu Mircea Secareanu, Phoenix, AZ

(US)

Inventor: Radu Mircea Secareanu, Phoenix, AZ
(Us)

Assignee: Radu Mircea Secareanu, Phoenix, AZ
(Us)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 17/398,728

Filed: Aug. 10, 2021

Prior Publication Data

US 2022/0368345 Al Nov. 17, 2022

Related U.S. Application Data

Provisional application No. 63/189,247, filed on May
17, 2021.

Int. CL

HO3M 7/30 (2006.01)

HO3M 7/40 (2006.01)

U.S. CL

CPC ... HO3M 7/3064 (2013.01); HO3M 7/4031

(2013.01); HO3M 7/6005 (2013.01)
Field of Classification Search

None

See application file for complete search history.

011_001_110_000_000_000_10...

/4

601 602

011_001_110_000_111_111_0};..

A

611 612

011_001_110_000_111_101...

A

621 622

000_001_110_000_111_101...

A

631 632

(56) References Cited

U.S. PATENT DOCUMENTS

3,656,178 A * 4/1972 De Maine HO3M 7/3066
341/87
3,914,586 A * 10/1975 Mclntosh HO3M 7/30
341/68
4,021,782 A * 5/1977 Hoerning HO3M 7/42
341/51
5,036,457 A * 7/1991 Glaserccccoeenne GOGF 7/00
703/22
5,298,895 A * 3/1994 Van Maren G11B 20/00007
341/51
5,363,098 A * 11/1994 Antoshenkov GO6T 9/005
341/95
(Continued)

Primary Examiner — Lam T Mai

(57) ABSTRACT

A hardware implementable lossless data compression
decompression algorithm is disclosed, where the input data
string is described in term of consecutive groups of alter-
nating same type bits, where one of these groups of same
type bits is defined as a preferred group with the other
groups having either lower or higher number of same type
bits, where the data string is partitioned into variable length
processing strings where the variable length is determined
by the occurrence of the preferred group or of a determined
number of bits consisting of groups of lower number of same
type bits, where these variable length processing strings are
processed function of the configuration and content of each
processing string only, where consecutive processing strings
are additionally processed based on their content only, where
processing is performed in a loop until a certain target
performance is achieved, where processing is done without
any data analysis, and where no negative compression gain
is achieved for any content of an input string.

28 Claims, 17 Drawing Sheets

FB=0 AB: 1.2 2340611 ..

fB=0 Ab 122340601,

603

604 605 606

FB=0 AB: 1.2 2341611 ..

b TA AT

614 615 616

FB=0 AB: 1.2 2341411 ..

fB=0 ARl 2234 4L

623

624 625 626
/éFB =0 AB: 5341411..
633 :EJ /é ;J /$

637 634 635 636

US 11,677,416 B2
Page 2

(56)

5,455,943
5,479,164
5,572,209
5,933,104
6,535,150
6,624,762
7,630,394
9,997,165

11,044,495

2002/0196166

2006/0170574

2008/0030384

2011/0109485

2012/0268297

2015/0002320

2015/0143197

2020/0279003

References Cited

U.S. PATENT DOCUMENTS

A * 10/1995 Chambers, IV .. GO6F 16/90344

A ¥ 12/1995 Yorks ...
A * 11/1996 Farmer
A * 81999 Kimura
Bl* 3/2003 ROSS .cccovvrevrennn

B1* 9/2003 End, III ...

B2* 12/2009 Matiasc...........

B2* 6/2018 Grancharov

B1* 6/2021 Dupont

Al* 12/2002 Satoh

Al* 82006 Itani
Al* 2/2008 Yokose
Al* 52011 Kataoka
Al* 10/2012 Kataoka
Al* 1/2015 Kataoka

Al* 52015 Klein ..o

Al* 9/2020 Dupont

* cited by examiner

708/203

HO04Q 11/0003

250/568

GOGF 16/1744

341/67

HO3M 7/3086

341/51

GO6F 16/2237

341/67

HO3M 7/3088

708/203

HO4L 69/04

709/228

G10L 19/0017
HO4N 19/48
HO3M 7/3084

382/229

HO04L 9/0656

341/51

HO3M 7/30

341/59

HO3M 7/40

341/65

HO3M 7/40

341/65
GO6F 5/00
341/65

HO3M 7/02

714/767

GOGF 16/90344

U.S. Patent Jun. 13, 2023 Sheet 1 of 17 US 11,677,416 B2

B\

/

%
= | s
Ty

SN

/s

s
102 103

NN

7

(
N
,S

101

U.S. Patent Jun. 13, 2023 Sheet 2 of 17 US 11,677,416 B2

200

\
(|

011 001 110 000 001 011 101 111 011 111

AT

201 202
203
o
String 200 description using FB and AB: 506
FB=0 s
ABstructure:1 2 2 3 61131415
204
String 200 after RB transformation:
FB=0 205
RB transformation: s

10_101_001_000_001_110_011_000_110_000
AB structure:
111112153223214

N

207

FIG. 2

U.S. Patent Jun. 13, 2023 Sheet 3 of 17 US 11,677,416 B2

300

A
(\

011_001_110_000_001_011_ 101 111 011 111
\ J\

ARV IR P

304 301 305 302 306 303

PS_1: 011 _001_110_000

/é L/éf HAI

310 304 311

PS_2: 001 011 101_111

P

320 321 305 322

PS_3: 011_11 PS_4: 1
/:; s~ ;Z /;é ~
330 331 332 340 341

FIG. 3

U.S. Patent Jun. 13, 2023 Sheet 4 of 17 US 11,677,416 B2

FB: 0O

PS_.1: 1.2 2340

AT

410 411 412 413

PS 2: 2113141

R

420 421 422423

PS 3: 140 PS 4: 1
/2 \f\ i /é /2

430 431 432 43 440 441

FIG. 4

U.S. Patent Jun. 13, 2023 Sheet 5 of 17 US 11,677,416 B2

500

\
(\

011_001_110_000_000_000
L J L J
| !
A A

501 502 503

FB=0 AB: 1.2 2 310

/é

510

FB=0 AB: 1.2 2 3 40402

A N

520 521 522 523

FIG. 5

US 11,677,416 B2

Sheet 6 of 17

Jun. 13, 2023

U.S. Patent

9¢€9 q€9 PE9 LE€9
AT 4
TIVIVES
9¢9 579 ¥¢o
0 U4
[
“TIVIvVECTC
919 ST9 19
A7
I

|

T T1T191veECCTl

909

S09

¥09

s

T T1T90vecCl

-av

-4V

-av

gV

€€9
w\

g4

0

€¢9

€19

1€9

m\

“*TI0T TTT 000 OTT TOO 000

129

w\

“*TOT TTT 000 OTT 100 TTO

119

m\

“*I0 TTT TIT 000 OIT 100 ITO0

109

.w\

“*0T 000 000 000 OTT TOO TTO

U.S. Patent Jun. 13, 2023 Sheet 7 of 17 US 11,677,416 B2

706

5\ Suml_ _Sum2_ Sum3 _ Sum4 _Sum5
1 1 11 111 1111 11111
2 2 12 112 1112%
3 21 121 1121
4 3 211 1211
5 | 22 2111
6 ! 13 122
7 31 2121
8 : 708—,— 4 221!
9 v 17 113
10 | 131
11 311
12 | 23|
13 ! 32i
14 : 709—,— 14|
: |

15 . 710~ 41!
16 M 5

FIG. 7

U.S. Patent Jun. 13, 2023 Sheet 8 of 17 US 11,677,416 B2

803 806

s01 802 ﬁ/ 804 805 Q‘/ 807
ﬁ’ Sum4 ﬁl j/ Sumb ﬁl

Actual Description Actual Description

1 1111 000 11111 0000
2 112 001 1112 0001
3 121 010 1121 0010
4 211 011 1211 0011
5 22 100 2111 0100
6 13 101 122 0101
7 31 110 212 0110
8 4 sos—— 111 221 0111
9 113 1000
10 131 1001
11 311 1010
12 23 1011
13 32 1100
14 14 809—,~1101
15 41 810-,-1110
16 5 811-~1111

FIG. 8

U.S. Patent Jun. 13, 2023 Sheet 9 of 17 US 11,677,416 B2

9 9

N NN

Need Available Remain Worth

Sum4 7 8 1
Sum5 13 16 3 1
Sumé6 24 32 8
Sum7 44 64 20
Sum8 81 128 47
Sum9 149 256 107
Suml0 274 512 238
Sumll 504 1024 520
Sum12 927 2048 1121
Sum13 1705 4096 2391
Sum14 3136 8192 5056 Y
FIG. 9

<ICAC>_<delimiter>_link

\ J\ J 2~
,SY P Y ;—J 1004

1001 1002 1003 /2014
ﬂ__:r_> <identifier>_<ODC>_link
\ y J L ‘ j
1011 1012 1013

FiIG. 10

U.S. Patent Jun. 13, 2023 Sheet 10 of 17 US 11,677,416 B2

1102 1103, 1112 1113 1114
LA AL
1 2 140 0100_010_link
1121 2“1101 1111/(
PN 1123
Identifier Meaning 2~PS type
0000 4 Exception PS
o001 1122 1.4 Full PS
0010 2 4 Full PS
0011 34 Full PS
0100 ~/ 1124 4 4 Full PS
0101 5 4 Full PS
0110 6 4 Full PS
0111 7_4 Full PS
1000 8 4 Full PS
1001 9 4 Full PS
1010 10 4 Full PS
1011 11 4 Full PS
1100 12_4 Full PS
1101 13 4 Full PS
1110 14 4 Full PS
1111 >=5 Exception PS

FIG. 11

U.S. Patent Jun. 13, 2023 Sheet 11 of 17 US 11,677,416 B2

/\(1201
- exception PS (4, 5, and greater)

1202
-full PSof class 1_4 to 27_4 ~ 1203

- open string of 28 bits (class 25 3, 26 2,27 1)

1204
- gap classes (class 26_3, 27 _2, 27_3) /\f
FIG. 12
Same type bits in a group Representation
1 0
1301 2 10 1302
3 110
4 1110
5 11110
1303—— N 111...110
1304 —— N-1
1305 —— 31 111...110

U.S. Patent

1401

Jun. 13,2023

1403

)

1402

Class ICAC
1 4 1111
2 4 4 112
3 44 121
4 4 4 211
5 4 4 22
6 4 4 13
7 44 31
8 274 All

Sheet 12 of 17

1404

)

US 11,677,416 B2

1405

y

Identifier ODC
0100 0007 /5906
0100 001 [-
0100 010 1407
0100 011 4 /\(
0100 100 :},_
0100 101
0100 110 —— 1408
0100 111 —,— 1409

FIG. 14

U.S. Patent Jun. 13, 2023 Sheet 13 of 17 US 11,677,416 B2

1502 1503 1504

1501)/)/

Number of @ How many How many root

Q\ bits in root root identifiers after
identifier identifiers redistribution

1 4 5 4—,— 1505

2 5 7 8

3 6 11 12

4 7 18 1—— 1506

5 8 22 59

6 9 21 21 —— 1507

7 10 17 19

8 11 20 24

9 12 10 10

10 13 2 2

11 14 2 2

12 15 3 3

13 16 2 2

FIG. 15

US 11,677,416 B2

Sheet 14 of 17

Jun. 13, 2023

U.S. Patent

97T ‘Oid L c791
........ 90 sa va €d zata — - €091
oTOT - "9Sd §Sd ¥Sd €Sd ¢Sd TSd
AR/ |
[B JL _ _L _)
........ 9I¥ SIY vIY €I¥ ZI¥ TIY ~z
€191
Ca:Sy9T vv91:TiY 0v9T 2091
OTTIT ‘ndinQ —— S 'Sd lIn} S ssed
1A :S9€9T7 V€91 ‘TIH 0€9T 109T

s >

00O0T00 ndinQg ——= ¥ T T :SdIiNt¥ zssep

US 11,677,416 B2

Sheet 15 of 17

Jun. 13, 2023

U.S. Patent

LT "SI

<Jaqunu uoneuiqwod>"T :lewloy g a1 —L- Tt

60L1

80LT X

/\A 949
Gx9 948

%9 ‘G4S 94V

A V4G ‘Ss¥

LOLT
oom\v\ \:\ Vx¥

SOLT

S

€TLT T
<G IT> 0
<HqOT> 0
<Ug 6> 0 YOLT
<uq 80 s/
QUq /> 0 :<Jaquwinu uonieuiquod> o
€0LT oLt

;S

<Jaquinu UOIBUIqWIOd> (0 :lewdoy T 431 —72-T0LT

U.S. Patent

Jun. 13,2023 Sheet 16 of 17 US 11,677,416 B2
1827
1828 1826 1825
1801 7N
1802 1824
— 1803 i/ \F
1804 |
1823

7

1822

1821

1816b

)
oy

1818

1817

=
1819
= =

1820

FIG. 18

U.S. Patent Jun. 13, 2023 Sheet 17 of 17 US 11,677,416 B2
1920
—_____H /5,
1919
1901 = O
1902 N 1917
~<Q129§j;,' /"5
1904
<: 1905
_—
v
1906 1916
‘l @ ? 1911 || 1912 || 1913 || 1914 || 1915
[<)]
i
N, e T T 5
gl 19 "V]
;$>1:1[>
o
[+)]
-

FIG. 19

US 11,677,416 B2

1

HARDWARE IMPLEMENTABLE DATA
COMPRESSION/DECOMPRESSION
ALGORITHM

CROSS-REFERENCE TO RELATED
APPLICATIONS

Application claims benefit of the following provisional
application:

EFS ID: 42733523

Application No.: 63/189,247

Applicant name: Radu Mircea Secareanu

Filing Date: 17 May 2021

FIELD

The present disclosure relates to data compression/de-
compression algorithms, and in particular to data compres-
sion/decompression algorithms that are suitable to be imple-
mented in silicon, as a circuit, in addition (or not only) to be
implementable in software.

BACKGROUND

Multiple compression/decompression algorithms exist,
classified as lossless (where the original data is restored
from the compressed file without any loss of data), and lossy
(where some of the original data is lost during the restora-
tion). This loss of data is assumed, for reasons such as the
human eye does not perceive the loss. The present disclosure
is a lossless compression/decompression technique, there-
fore, the lossy techniques will only be briefly outlined, while
the focus for this background section will be on lossless
techniques.

As mentioned, numerous lossless and lossy techniques
exist. Among the lossless techniques, the following can be
mentioned:

a. Run Length Encoding (RLE)—based on identifying

consecutive sequence of symbols.

b. Huffman—uses the probability distribution of a so-
called alphabet of symbols, and assigns code words
pursuant to probabilities (smaller code words for higher
probabilities). Static Huffman and Adaptive Huffman
have been developed.

c. Lempel Zew Welch—it is a dictionary based technique,
where a file is read and a code is given to each found
character

d. Burrows-Wheeler Transform—transforms a block of
input data such that the amount of runs of identical
characters is maximized

e. Arithmetic Coding—transforms the input data into a
single rational number between zero and one, by
changing the base and assigning a single value to each
unique symbol from zero up to the base, where the base
is the number of unique symbols in the input. Arith-
metic coding can be considered as the best entropy
coding technique if the objective is the best compres-
sion ratio, but it is quite complicated and involved as
compared to the rest of the techniques.

Based on these techniques, as well as others, combining

them, multiple algorithms have been developed, such as:

1. LZ77—is the first algorithm that introduced the “sliding
window concept”. It s a dictionary based algorithm,
using offset, run-length, and a deviating character.

ii. LZR—is an improvement/modification of LZ77.

iii. LZSS (Lempel-Ziv-Storer-Szymanski) is yet another
improvement of LZ77.

15

20

25

35

40

45

50

60

65

2

iv. Deflate—combines L.Z77 (or LZSS) with Huffman,
and is the basis of the majority of compression tasks
today, including the widely used gzip. Deflate64
improves on Deflate.

v. LZH, LZB, ROLZ, and others, are various improve-
ments and optimizations of [LZ77 and LZSS.

vi. LZP—introduces prediction in the LZ77 (and deri-
vates) family.

vii. LZRW introduces reduced offset in L.Z family, while
LZIB address speed optimizations in LZRW.

viii. LZS, LZX, LZO, LZMA are further optimizations of
various algorithm performance factors. LZMA is used
in 7zip software.

ix. Statistical Lempel-Ziv—operates on a statistical analy-
sis of the data combined with an LZ77 variant.

x. LZ78—it is a dictionary-based algorithm, where the
input file is either pre-processed to create the diction-
ary, or the dictionary is built-up as the file is parsed.

xi. LZW, LZWL, LZJ, are improvements and optimiza-
tions of LZ78.

Another family of algorithms are non-dictionary based:

a) PPM—prediction by partial matching—is a statistical
modelling technique that uses a set of previous symbols
in the input to predict what the next symbol will be.
PPM is implemented in 7-zip and RAR software.

b) Bzip2 Uses RLE combined with Burrows-Wheeler
Transform. It is used in bzip2 software.

c) PAQ it is an improvement of PPM, using a technique
called “context mixing”. A version of PAQ is used in
PeaZip software.

Other algorithms:

A. BPE—Byte Pair Encoding—most common pair of
consecutive bytes of data is replaced with a byte that
does not occur within the data.

B. Delta encoding—Data is stored, or transmitted, in the
form of differences between sequential files.

C. LOCO-I—combines. Huffman with context models. Is
the core of a new ISO/ITU standard for lossless or
near-lossless continuous tone images.

D. Zstandard—used in the original zip and gzip software,
it is optimized for speed, at the performances of
Deflate.

E. Brotli—combines 1.Z77, Huffman, and second-order
context modelling.

F. Clustering-based compression

G. MLP—Meridian Lossless Packing—is the standard
lossless compression method for Audio-DVD.

H. Deep Coder—is from the Convolutional Neural Net-
work (CNN) based framework, and is used for video
compression primarily.

1. Generative Adversarial Network (GAN) based com-
pression—is an alternative to neural networks. These
techniques can compress data more than 2.5 times more
efficient than traditional methods. It compresses the
images based on the most matching features. Decom-
pression is made based on the predictions that were
made.

Among the lossy techniques/algorithms, MP3, MP4,

AAC, WMA, etc., can be mentioned.

Successful attempts have been made to implement loss-
less techniques in hardware. The following such attempts
can be mentioned: FPGA-LOCO-I, Snappy, LZMA, Block
GC3.

Note that all the above-mentioned techniques/algorithms
require, or are based on (sometimes extensively) the analysis
of the to-be compressed data, or on the pre-processing of the
named data, or on data built (such as a dictionary). This data

US 11,677,416 B2

3

analysis, or pre-processing, or built, is suitable for software
implementation primarily. In comparison, the algorithm
disclosed here, takes the data as is, i.e. as presented to, or
inputted to, or received by the algorithm, to produce an
immediate compressed output, therefore requiring no data
analysis, pre-processing, or built, to name a few. This is also
one of the fundamental reasons, and a major enabling
advantage of the subject disclosure, why the algorithm (or
technique) that is disclosed here is suitable for seamless
hardware implementation.

SUMMARY

There are two primary aspects that are disclosed:

a. The compression/decompression algorithm (or method,

or technique) in itself

b. The suitability of the disclosed compression/decom-

pression technique for hardware implementation

Across the disclosure, the compression/decompression
algorithm will be referred to as “algorithm”, or “method”, or
“technique”, all being equivalent.

Regarding the first disclosed aspect—the compression/
decompression algorithm in itself. At the onset, a note
regarding the structure of this disclosure is required, note
that will enable better understanding of the flow of the
disclosure. Key concepts are being introduced, defined, and
detailed, concepts that the disclosed embodiments are based
on. The algorithm in progressively introduced during this
process.

In summary, the algorithm works as follows: an Initial
Full Data String (IFDS) is serially partitioned into a number
of sequential Processing Strings (PS), where the length of
each PS is determined by the occurrence of a fixed bit
pattern, called Delimiter (DE) or by the reach of a set limit
number of bits. Every such determined PS is classified and
compressed in two independent ways:

a) individually, every PS is compressed as a whole, and

b) the said PS classification of every two adjacent PS, are

compressed

Once the end of the IFDS is reached, it is called that the
end of one cycle is reached. The process can be repeated
using as new IFDS the output of the just completed cycle,
since the said output has a very different structure as
compared to the initial input IFDS. This cycle repeat is
possible also because the algorithm is designed such that, no
matter the IFDS content, the output corresponding to any PS
content is never at a data loss—it is either 0 (no gain), or
gain. Unlimited number of cycles can be processed for
unlimited compression, the only theoretical limit being that
an IFDS cannot be smaller than a certain number of bits. The
decompression is perfectly mirrored to the compression
process, leading to an identical restored file to the initial
IFDS, which was the input to the first cycle.

Regarding the second disclosed aspect—the suitability of
the disclosed algorithm for hardware implementation. As
will be apparent from the details presented in this disclosure
to a person familiar with digital design, the algorithm can be
immediately implemented using basic digital circuitry. For
example, every determined PS, which in the example pro-
vided is no more than 32 bits in length, becomes an address
to a memory, where the output of said memory is the
compressed output corresponding to that PS. In addition,
due to the serial nature of the algorithm, the various stages
of combinatorial logic are suitable to be placed in a pipeline
(again, a concept familiar for people skilled in digital
design).

25

30

35

45

60

4

A brief discussion concerning hardware aspects:

The pipelining implementation approach will theoreti-
cally permit that at every “clock cycle” a valid output
is generated (such as at every clock cycle, a PS is
processed and a corresponding compressed output is
generated). For the sake of exemplification, if a clock
frequency of 1 GHz is considered, then, theoretically,
10° PS can be processed.

As mentioned, for an individual trained in digital design,
it is apparent that high clock frequencies will not
necessarily accommodate the critical path of every
combinatorial logic path. While pipelining can be
extended to accommodate all situations, for a conser-
vative and realistic pipelined implementation, a PS can
be processed in 10 clock cycles, resulting in 100
million processed PS per second using a 1 GHz clock.
A skilled party, employing high performance digital
design, can push this performance characteristic more
aggressively, or, at the same time, function of the
application demands as well, can relax this perfor-
mance characteristic resulting in less demanding hard-
ware. These are aspects that are decided function of
application and performance needs and are in no way
limiting or restrictive for this disclosure.

The decompression can be implemented on a similar type
of architecture, where, at a high level, just the content
of the above mentioned memory is consequently and
appropriately different.

Important to note for this disclosure is that the execution
speed and resulting compression and decompression
performance that is achievable by implementing the
embodiments in this disclosure will open up a multi-
tude of novel applications and advances of current state
of the art.

In conclusion of this summary chapter, the embodiments
that are disclosed here permit the following highlights to be
stated:

1. The algorithm does not require any input data analysis.
Only a horizon of one processing string (32 bits max)
is typically required.

ii. The algorithm will partition an input data string in
processing strings of maximum 32 bits

iii. For any content of a processing string, the algorithm
output corresponding to that processing string is never
at a data loss

iv. The algorithm can be implemented straightforward, in
a pipelined, memory based architecture leading to a
high data throughput

v. The compression speed is equal to the decompression
speed

BRIEF DESCRIPTION OF DRAWINGS

Embodiments will be described, by way of example, with
reference to the drawings, in which

FIG. 1 illustrates an input full data string (IFDS) and the
partition of this IFDS into processing strings (PS) according
to one or more of the embodiments.

FIG. 2 is used to introduce several key concepts for this
disclosure, such as first bit (FB), alternate bits (AB), relative
bits (RB), and RB transformation, concepts used in one or
more of the embodiments.

FIG. 3 is used to introduce additional key concepts for this
disclosure, such as delimiter (DE) and link bit (link), con-
cepts used in one or more of the embodiments.

FIG. 4 is used to introduce additional key concepts for this
disclosure, such as bit sum (Sum), processing string format

US 11,677,416 B2

5

(PS format), and PS classification (PS class), concepts used
in one or more of the embodiments.

FIG. 5 and FIG. 6 are used to introduce the concept of
exception processing string (exception PS), concept used in
one or more of the embodiments.

FIG. 7 and FIG. 8 are used to describe and discuss the
structure of the core part of a full processing string, as well
as to introduce the concepts of input core acceptable con-
figuration (ICAC), output description configuration (ODC),
and remain output description configuration (RODC), all
used in one or more of the embodiments.

FIG. 9 illustrates the distribution and coverage dynamics
of ICAC versus remain ODC for a key of processing strings
used in this algorithm.

FIG. 10 is used to introduce the algorithm output format
corresponding to a full PS, as used in one or more of the
embodiments

FIG. 11 is used to explain and exemplify the algorithm
output and the unique correspondence to a given input, as
used in one or more of the embodiments.

FIG. 12 is used to exemplify the classes and constructs
used by the algorithm to cover any arbitrary input string,
classes and constructs used in one or more of the embodi-
ments.

FIG. 13 is used to introduce, illustrate, and exemplify the
format of a termination processing string, in accordance to
one or more of the embodiments

FIG. 14 is used to introduce, illustrate, and exemplify, the
concept, format, and derivation of root identifiers in accor-
dance to one or more of the embodiments

FIG. 15 illustrates the full list of root identifiers used in
the algorithm, in accordance to one or more of the embodi-
ments

FIG. 16 and FIG. 17 illustrates how the root identifiers are
used in the algorithm, in accordance to one or more of the
embodiments

FIG. 18 is used to introduce, describe, and illustrate the
architecture and hardware implementation of a compression
chip, in accordance to one or more of the embodiments

FIG. 19 is used to introduce, describe, and illustrate the
architecture and hardware implementation of a decompres-
sion chip, matching the compression chip, in accordance to
one or more of the embodiments

DETAILED DESCRIPTION OF THE
INVENTION

At the outset it should be noted that the examples pre-
sented in the disclosure are in no way limiting, and the
skilled person will appreciate that the disclosure is equally
applicable to multiple variations and alternatives, and mul-
tiple optimizations are possible to increase the performance
metrics of the algorithm, such as the algorithm compression/
decompression gain or the execution speed of one compres-
sion/decompression cycle.

FIG. 1 illustrates an input full data string (IFDS—100)
and the partition of this IFDS into processing strings (PS)
according to one or more of the embodiments.

In FIG. 1, 101, 102, 103, 104, 10(N-1) and 10(N) are
representing processing strings (PS). There are several
types of processing strings as will be detailed in this
disclosure; most of the PS are called full processing
strings (definition of a full PS will be introduced a little
later, to insure full understanding).

As depicted, the fact that the rectangles (abstract repre-
sentation of PS) have different lengths is intentional

10

—
W

20

25

40

45

60

65

6

and targets to represent the fact that PS have different

lengths in term of number of bits.

In FIG. 1, 105, the dot marks, is intended to represent the
fact that many PS are in the IFDS, while 10(N-1) is
intended to represent the last full PS. 10(N) is intended
to represent the remaining bits between the last full PS
and the end of the string, 10(N) being also referred to
as a termination PS in this disclosure.

The content of a full PS, as well as the content of a
termination PS will be described next, in this disclo-
sure.

FIG. 2 is used to introduce several key concepts for this
disclosure, such as first bit (FB), alternate bits (AB), relative
bits (RB), and RB transformation, concepts used in one or
more of the embodiments.

a. In FIG. 2, an example data string is used to enable to

introduce the above named concepts.

The example data string 200 consists of 30 bits. For
clarity and ease to follow, underscores 202 are used
every three bits.

The data string 200 consists of the following bit
sequence: one 0, followed by two 1, followed by two
0, followed by three 1, followed by six 0, followed
by one 1, followed by one 0, followed by three 1,
followed by one 0, followed by four 1, followed by
one 0, followed by five 1.

b. The first concept introduced is that of the first bit (FB).
The FB for the data string 200 is O, indicated in FIG. 2
by 201. In this algorithm, the FB of the initial IFDS will
be always extracted and written to the algorithm output,
for reasons that will become apparent.

c. The second concept introduced is that of alternate bits.
As outlined above for string 200, different groups of

same type bit (0 or 1) alternate.

To exemplify the concept of alternate bits, referring to
the data string 200, the following groups of same
type bit alternate: group of one 0, followed by group
of two 1, followed by group of two 0, followed by
group of three 1, followed by group of six 0, fol-
lowed by group of one 1, followed by group of one
0, followed by group of three 1, followed by group
of one 0, followed by group of four 1, followed by
group of one 0, followed by group of five 1.

Using the first bit and the alternate bits concepts (FB
and AB), data string 200 can be uniquely described
as shown in FIG. 2 as 203. This unique description
of a data string using FB and AB is used in all cases,
for IFDS, in this algorithm.

Note that the content of the alternate bit configuration
representing the data string 200 (and true for any
IFDS) makes abstraction of the type of bit for every
of the constituent groups—the type of bit for every
of the constituent groups become redundant infor-
mation—all is needed to know the type of bit for
every constituent group is FB when AB structure is
used.

d. The concepts of relative bit, RB, and that of RB
transformation, are introduced next.

To exemplify the concepts, the data string 200 is used,
where FB 201 is 0.

The rest of the bits, following 201, can be described in
term of relative value between consecutive bits,
either as “the same as previous hit” or as “changed
from previous bit”. If 0 is assigned to denote “the
same as previous bit” and 1 to denote “changed from

US 11,677,416 B2

7

previous bit”, the data string 200 is transformed as
shown in FIG. 2 at 204, specifically at RB transfor-
mation 205.

When writing the string 200 after the RB transforma-
tion in term of AB structure, note how different is the
straight AB structure 206 as compared to the AB
structure 207 obtained after the RB transformation.

It is key to note that these are two representations of the
same data string, and the two representations are
very different. Having two different representations
of the same string is very important as a differenti-
ating embodiment in this disclosure, as will be
described.

e. Across this disclosure, for practical reasons, the algo-
rithm will be exemplified using the 203 style string
description (without the RB transformation). At the
end, the differentiating factors, when using the 205
style RB transformation will be outlined as new
embodiments.

FIG. 3 is used to introduce additional key concepts for this
disclosure, such as delimiter (DE) and link bit (link), con-
cepts used in one or more of the embodiments. Data string
300, used to introduce these concepts, is the same as data
string 200, for continuity in term of understanding.

a. The concept of Delimiter (DE) is introduced, being

defined as a preferred bit pattern.

The examples provided in this disclosure will use as the
above named preferred bit pattern to be a group of
four same type bits. This bit pattern is in no way
limiting or restrictive to the disclosure, and a person
skilled in the art can use a different bit pattern,
possibly with the outcome to optimize or improve
the algorithm performances such as the compression
gain.

b. As mentioned, to exemplify the algorithm for this
disclosure, a DE consisting of a group of four same
type bits is used. The data string 300 has, accordingly,
three delimiters: 301 (as part of the six bit group), 302
(as part of the four bit group) and 303 as part of the five
bit group.

c. In a data string, obviously, there are groups of same
type bits smaller than four (such as one, two, or three),
and there are groups of same type bits larger than four
(such as five, six, seven, and so on).

Groups of same type bits smaller than four are called in
this disclosure as lower grade, while groups of same
type bits larger than four are called in this disclosure
as higher grade.

d. It is apparent that between two consecutive delimiters
there are only lower grade groups. The same applies
between the start of the string and the first delimiter in
the string.

e. Since a delimiter can be part of a group of same type
bits larger than four (as is the case in fact for delimiters
301 and 303 in string 300), the concept of link bit is
introduced.

The link bit is always used after a delimiter, with one
exception that will be detailed later in the disclosure.

The link bit is 0 if the bits following the delimiter are
of the same type as the bits in the delimiter, and the
link bit is 1 if the bits following the delimiter are of
the opposite type then the bits in the delimiter. For
example, in delimiters 301 and 303 of string 300, the
link bit will be 0, because for 301, the delimiter is
followed by two bits of the same type as the bits in
the delimiter, and for 303, the delimiter is followed
by one bit of the same type as the bits in the

—_

0

—_

5

25

40

60

8

respective delimiter. For delimiter 302, the link bit is

1, because the delimiter is followed by one bit of

opposite type than the bits in the delimiter.

f. When referring to an input data string, such as to an
IFDS, all bits in-between two delimiters, or in-between
the start of the string and the first delimiter, together
with the four bits of the delimiter following these bits,
form an input processing string (PS). In other words,
for two consecutive delimiters, k and (k+1), all bits
following the four bits of delimiter k up to and includ-
ing the four bits of delimiter (k+1), form an input PS.
There are several exceptions that will be detailed later
in the disclosure, for proper understanding of the pro-
cess.

For example, in string 300, the following input PS are
formed, according to the above:

i. PS_1 (310), starts from the start of the string, and
includes 304 and the delimiter 311 (part of 301)

ii. PS_2 (320), starts with 321 (the two bits remain-
ing part of 301), followed by 305, followed by the
four bits of delimiter 322 (which is 302)

iii. PS_3 (330), starts with 331 (the bit of opposite
type following the delimiter 302), followed by the
delimiter 332 (part of 303)

iv. PS4 (340), is a termination PS, as defined above,
and consists of 341 (the remaining one bit part of
303)

g. Accordingly, the initial data string 300 is uniquely
described by four input PS (310, 320, 330, 340).

FIG. 4 is used to introduce additional key concepts for this
disclosure, such as bit sum (Sum), processing string format
(PS format), and PS classification (PS class), concepts used
in one or more of the embodiments.

In order to properly introduce these concepts, the focus
shifts on describing the four input PS in the string 300 in
term of FB and AB. The string 300 can also be described
with the RB transformation, leading to a completely differ-
ent outcome, but as mentioned, the key differentiating
aspects coming from using the RB transformation will be
detailed at the appropriate time in this disclosure.

The description, or representation of the four input PS
from string 300 in term of FB and AB, is introduced using
FIG. 4. Note the following:

a. One FB per string (or IFDS) is sufficient.

b. As mentioned, up to this point, two types of input PS
have been introduced: full PS, and at the very end of an
IFDS, one termination PS.

Always, a full PS has the same format, as is exemplified

for all three full PS examples (410, 420, and 430).

i. The full PS format always consists of three parts:
core (411, 421, 431), delimiter (412, 422, 432) and
link (413, 423, 433), respectively.

ii. The core and delimiter are always expressed in
term of AB, while the link is expressed in absolute
bit value (0 or 1, as introduced above).

iii. The core always consists of groups of same bits
smaller than four (lower grade). The delimiter is
always a group of four bits. And the link is always
a one bit, in absolute value.

Adding all groups of lower grade in a core, results in a
unique number representing that core. This number is called
in this disclosure the core bit sum, and is referred to as Sum,
or core characteristic number. To exemplify, the three Sum
numbers for the three full PS, are:

US 11,677,416 B2

9

a) For PS_1 (410), Sum is 1 plus 2 plus 2 plus 3—=Sum=8

b) For PS_2 (420), Sum is 2 plus 1 plus 1 plus 3 plus
1—=Sum=8

c) For PS_3 (430) Sum is 1—=Sum=1

The three full PS are classified, for the purpose of use in
one or more embodiments in this disclosure, as “Sum_4" (or
Sum_delimiter). In string 300 therefore, there are three PS,
classified as 8_4, 8_4, 1_4.

There is always one single termination PS per IFDS, and
this termination PS has a different format than the full PS,
format which will be detailed at the appropriate time in this
disclosure. For string 300, this termination PS (PS_4) con-
sists in one bit.

In conclusion with regard to FIG. 4, note that the data
string 300 is uniquely described by the FB and the four PS
410, 420, 430, 440, where 410, 420, and 430 are full PS,
where 410 and 420 belong to PS class 8_4, 430 belongs to
PS class 1_4, and 440 is a termination PS.

It was mentioned that a link bit always follows a delimiter
with one exception. This exception is detailed next, with
regard to FIG. 5.

After a delimiter, any number of same type bits can
follow, one, two, three, four, five, six, and greater. If this
number is smaller than four, then these bits will be part of
the core of the next PS, and the three full PS examples with
regard to string 300 in FIG. 3 exemplified this situation.
When this number is four or greater, these same type bits
form yet another delimiter. This situation is shown in FIG.
5, in order to introduce the above referred exception.

In FIG. 5, considering the string 500, where the string is
represented in term of FB, AB as 510, the following remarks
can be made.

1£510 is described in term of full PS format as introduced
above, the representation will be as shown by 520.

According to 520, the string 500 will be broken down into
three PS, namely 521, 522, and 523, with 521 and 522
full PS, and 523 termination PS.

It must be noted at this time that this approach in
describing using full PS the situation when a delimiter
is followed by four or more same type bits, is notably
ineflicient and redundant. This is inefficient and redun-
dant for two key reasons:

Large same type bit groups are fragmented, and

Multiple, unnecessary, redundant link bits are intro-
duced.

The solution is to formulate a new concept describing
a new type of PS, named exception PS, as follows:
After an input PS of class x_4, with x greater than

zero, any same type bit group greater or equal to
four will be preserved as is.

The exemplification of this exception PS rule is shown in
FIG. 6. An exception PS is also referred to in this disclosure
as special grade, or first grade.

a. The first exemplification is with regard to string 601,
where 602 (the dots) signify that the string 601 con-
tinues with other multiple input PS that are not impor-
tant for this exemplification.

603 is the 601 representation in term of FB, AB. Here,
604 represents the full PS (with the “0” after “4”
representing the link bit), 605 represents the excep-
tion PS, and 606 represents other PS in the string
which are not relevant for this exemplification.

Focusing on 605 (the exception PS), note that it has a
very different format as compared to a full PS—it
does not have a core and a link bit, and the delimiter

20

25

w

0

35

40

45

55

60

65

10

can be any number greater or equal to four, where

this number is equal to the number of bits in the

group (six here).

The absence of the core is obviously the reason why
this exception is triggered. The link bit is not
necessary because it is automatically implied that
the bit type changes after this group of same type
bits.

b. The second exemplification is with regard to string 611.
All notes made with regard to string 601 hold.

The string 611 example is provided here to outline that
the exception PS 615 is of a different bit type than the
bit type of the delimiter in the 614 full PS, as
indicated by the link bit 1 in full PS 614.

Therefore, the point that is being made here is that the
exception PS applies regardless if the bit type in the
exception PS group maintains or changes the bit type
from the previous delimiter.

c. The third exemplification is with regard to string 621.
The differentiating point made here is that the excep-

tion PS 625 has four same type bits, this being the

minimum number to trigger an exception PS.

d. The fourth exemplification is with regard to string 631.
The differentiating point made here is that an exception

PS (637) is also applicable when occurs as the first

thing in an IFDS.

Concluding, there are three types of input PS used in this
algorithm—full PS, exception PS, and termination PS.

The full PS format consists of core, delimiter, and link bit,
where the delimiter is always four same type bits.

The exception PS format consist of delimiter only, where
the delimiter is of any number of same type bits greater
or equal to four. An exception PS occurs immediately
after a full PS and can also be the first input PS in an
IFDS.

A termination PS always occurs at the end of an IFDS.
The format of a termination PS is discussed at the
appropriate time, later in the disclosure.

It is time now to start focusing on introducing the nec-
essary concepts to describe the compressed output of the
algorithm, as used in one or more of the embodiments.

The first concept to focus on from this point of view is the
output structure that corresponds to the core part of a full PS,
output structure that has key implications on how the output
of the algorithm will look like.

As discussed:

The core part of a full PS consists of multiple groups of
same type bit, where these multiple groups are of 1, 2,
or 3 same type bits only, i.e. multiple groups of lower
grade.

Adding the bits in all these multiple groups results in a
unique number characteristic for that respective input
PS—this unique number is called Sum or characteristic
number.

The full PS is called to be of class “Sum_4". Since Sum
characterizes the core content, Sum makes sense only
for a full PS, and Sum is always greater or equal to 1.

It is fundamental for this disclosure that the full PS,
therefore the core, is described in term of AB.

Given all the above, FIG. 7 is used to describe and discuss
the output structure that corresponds to the core part of a full
PS. An example is depicted, example that is sufficient to
explain the key points regarding this output structure.

In FIG. 7, the 701 column is an index, while columns 702,

703, 704, 705, and 706 describe all possible configu-

rations in AB format, in the first five Sums supported by

US 11,677,416 B2

11

the algorithm, namely Sum1, Sum2, Sum3, Sum4, and
Sum5. 707 (the doted square), is drawn just to contain
all these configurations.

The above named possible configurations refer to all
possible combinations of same type bit groups, which,
when added, equals the respective Sum.

Accordingly, when a configuration is described for
example by 112 for Sum4, it means that there are three
alternating bit groups of same type bits, the first group
of one bit, the second group of one bit, and the third
group of two bits. This configuration can correspond to
either 0100 or 1011 real bit structure. As described, 112
configuration is in AB format, and is uniquely defined
by specifying FB (AB and FB are used as fundaments
for this disclosure, as explained).

Continuing, as shown in FIG. 7:

Suml has one possible configuration, Sum2 has two
possible configurations, Sum3 has four possible con-
figurations, Sum4 has eight possible configurations,
and Sum5 has 16 possible configurations.

Out, of the five Sums used in this example, Sum4 and
SumS5 have configurations with four or more same type
bits.

The key aspect to note is that configurations with four or
more same type bits are not acceptable as part of a core,
since the core can only contain lower grade groups.

Therefore, configuration 708 for Sum4, and configura-
tions 709, 710, and 711 for SumS5, are not acceptable as
part of a core.

This means that, for the embodiments applicable to this
disclosure, Sum4 is described by 7 configurations that
are acceptable for a core, and Sum5 is described by 13
configurations that are acceptable for a core.

This implies that for Sum4 one configuration remains and
can be used for something else, while for Sum5, three
configurations remain and can be used for something
else.

The above named “use for something else” remain con-
figurations is another fundamental aspect for this dis-
closure.

These configurations that are acceptable as part of a core,
must be uniquely described for use in the algorithm output,
using the minimum amount of bits. In other words, every
unique input core acceptable configuration (ICAC) must
have a unique output description configuration (ODC),
where this ODC has minimum bits. Sum4 and Sum5 will be
used to exemplify this correspondence, and FIG. 8 is used to
help explain this correspondence. Obviously all configura-
tions in all Sum must have such correspondence.

Sum4, as outlined above, has 7 ICAC, therefore, the
minimum number of bits that can be used for ODC to
represent these 7 ICAC is three bits.

SumS5, as outlined above, has 13 ICAC, therefore, the
minimum number of bits that can be used for ODC to
represent these 13 ICAC is four bits.

To generalize, all configurations in a Sum, having Sum
number of bits, can be described using (Sum-1) number
of bits.

An important note is required:

For Sum4, there should be four bits necessary, and
for Sum5 there should be five bits necessary.

That is because, for example, configuration 112 in
Sum4 can have two practical forms, 0100 and
1011.

However, because of the FB/AB representation that
is used in this disclosure, this representation
makes possible to uniquely identify each real

20

25

35

40

45

55

60

65

12

configuration by a reduced set of configurations,
making therefore possible that a Sum number of
input bits to be described by (Sum-1) number of
bits in the algorithm output. This aspect is funda-
mental for this disclosure.

Next, note in FIG. 8, the correspondence between every
unique input core acceptable configuration (ICAC) in AB
format and the unique output description configuration
(ODC) of that respective input configuration, for both Sum4
and Sum5. Output description configuration (ODC) for this
unique output configuration will be a standard name used
across this disclosure. Some details about FIG. 8:

801 column is an index, 803 points to Sum4, 806 points
to Sum5, 802 column describes all Sum4 input possible
configurations in AB format, 804 column points to the
corresponding output description configurations, 805
column describes all Sum5 input possible configura-
tions in AB format, and 807 column points to the
corresponding output description configurations of all
Sum5 input configurations.

Note that in 802/805, all input configurations are
described and not just the ICAC, and this is done
intentionally, in order to make a point. The point that is
being made with this is that there are very specific input
configurations that are not core acceptable, and these
input configurations correspond to very specific output
description configurations (ODC) that are used for
something else in this disclosure.

These ODC that correspond to input configurations that
are not core acceptable for a class, and that will be used
for something else in this disclosure, are called Remain
ODC, or RODC).

As exemplified in FIG. 8, 808 points to the single remain
ODC of Sum4, and 809, 810, and 811 point to the three
remain ODC of SumS5.

As mentioned above, there is one remain ODC (RODC)
for Sum4, and there are three RODC for Sum5. The higher
the Sum, the more RODC. In FIG. 9, the number of RODC
are described up to Sum14. The reason why Sum14 is used
as an upper limit is explained a little later in the disclosure,
to insure full understanding.

Important to note at this point is that Sum that is greater
or equal than the number of bits in the delimiter feature
RODC, while Sum that is smaller than the number of bits in
the delimiter, do not feature RODC.

With respect to FIG. 9, note the following:

Column 901 lists all the Sum that feature RODC, up to

Sum14, as mentioned.

Column 902 outlines the number of ICAC that are needed
for each of these Sum.

Column 903 outlines the total number of ODC that are
available for that respective Sum. For example, for
Sum4, there are three bits used to describe, therefore
there are eight ODC available.

Column 904 represents the difference between the Avail-
able (903) and Need (902), i.e. ODC minus ICAC, and
outlines therefore the remain ODC (RODC) for every
Sum, RODC which, as mentioned, is “used for some-
thing else” in this algorithm.

Column 905, labelled as “worth”, will be explained a little
later, to insure full understanding.

Note in FIG. 9 the following important aspects for this

disclosure:

The numbers in column 902 (ICAC) increase from Sum
to Sum at a notable slower ratio than two. This is very
important, as will be described a little later in the
disclosure, to insure full understanding.

US 11,677,416 B2

13

The numbers in column 903 (ODC) increase monotoni-
cally by a factor of two from Sum to Sum.

This monotonic increase (doubling from Sum to Sum)
is fully expected, since there is an extra bit between
two consecutive Sums.

This is one of the reasons why the slower rate increase
for “Need” mentioned at a. above is very important
when compared to the factor of two “Available” rate
increase, making the difference Available minus
Need to notably increase as Sum increases.

As a consequence of the different rate of increase detailed
at a. and b. above, note the numbers in column 904
(Remain), and compare, for each Sum, with the num-
bers in column 902 (Need).

Note for example that starting with Sum11, the remain
number (column 904) is greater than the need num-
ber (column 902).

This can mean also that, for example, starting with
Sumll, (Sum-2) number of bits can be used for the
ODC, instead of (Sum-1).

A person skilled in the art can develop a version of the
algorithm based on this observation, in particular
since for example at Sum19 and above, (Sum-3) bits
are sufficient, and at Sum26 and above, (Sum-4) bits
are sufficient, and so on, the number of bits needed
to uniquely represent all ICAC continue to drop as
Sum increases.

The version of the algorithm that is described in this
disclosure maintains the (Sum-1) number of bits for
the ODC constant no matter the Sum, with the goal
to maximize the remain ODC number and minimize
the hardware needs, for reasons that are described a
later in the disclosure.

Now that the core of a full PS is described in term of how
it will look like in the output of the algorithm (ICAC will be
ODCQ), it is time to introduce and discuss the entire output
format corresponding to a full PS.

The format for a full PS has been shown to be core

(ICACQ), followed by 4 bit delimiter, followed by link.

The corresponding output format of this full PS will be
introduced directly here, as identifier, followed by
ODC, followed by link. FIG. 10 portrays this output
format of a full PS.

In FIG. 10, 1004 is the format of the full PS and 1014 is
the corresponding output format. For 1004, 1001 is the
ICAC, 1002 is the delimiter, and 1003 is the link. For
1014, 1011 is the identifier, 1012 is the ODC, and 1013
is the link. 1003 is identical to 1013 (same link bit is
transferred to the output). ODC (1012) has direct,
unique, and one to one correspondence to ICAC
(1001), as explained. And 1011, the identifier, is a new
concept that is being defined next.

In order to explain this newly introduced identifier con-

cept, FIG. 11 is being referred to.

In FIG. 11, 1101 represents the full PS, part of the IFDS,
in the AB format. Note that the full PS has a core
(ICAC) of Sum4, where the actual AB configuration is
121 (1102). With the four bit delimiter (1103), this full
PS has 8 actual data bits. A link bit equal to 0 (1104) is
considered.

In FIG. 11, 1111 is the corresponding output format of this
full PS, output format as introduced and explained with
reference to FIG. 10. As mentioned there, the output
format consists of an identifier (1112), an ODC (1113)
and the link bit (1114). As mentioned, the link bit 1114
is the same as the link bit 1104.

5

10

20

25

30

35

40

45

55

60

65

14

According to FIG. 8, for Sum4 (803), the ODC for the 121
ICAC, in column 804 is 010 (as noted at 1113). The
identifier 1112, has four bits, and its absolute value is
0100 (as pointed by 1124 in FIG. 11).

Note that above, choices that are not properly introduced
or explained are made. These choices refer to the identifier
length of four bits, and the identifier absolute value of 0100.
These choices are explained next.

As mentioned, the full PS 1101 has eight actual data bits.

For a compression gain equal to zero, the number of input
data bits must be equal to the number of output data
bits.

In the output data bits, the link bit is an integral part of the
output, because if the link bit would not exist in the
output, the actual value of the bits following a delimited
would not be possible to be restored during decom-
pression. The link bit specified in the format of the
input full PS, is in fact determined for the output use.

Therefore, in the output, for the considered example,
ODC plus the link bit account for four bits already.
Accordingly, for compression gain to be equal to zero,
the choice for the identifier must be four bits in length.

Another way to look at the choice of size 4 for the
identifier, is that the identifier size is equal to the
delimiter size (input-output correspondence therefore is
that the delimiter size in the input equals to the iden-
tifier size in the output, and core (Sum) size in the input
equals to (Sum-1) ODC size plus link bit in the output).

Therefore, the motivation of choosing the identifier length
at four bits is clear. In order to explain the chosen absolute
value, reference is being made to FIG. 11 again.

In FIG. 11, all 16 core identifiers used in the algorithm are
listed in the 1121 column. Note that there are 16 core
identifiers since the identifier has four bits.

The correspondence between the number of identifiers
and the number of bits in the identifier is not
required, but in the algorithm development, this
maximum correspondence proves to be necessary in
order to generate the maximum amount of remain
configurations, as it will be shown.

However, if a person skilled in the art, as mentioned,
chooses to develop a version of the algorithm with a
delimiter size of six bits for example, and therefore
possibly an identifier size of six bits, having 64
identifiers (maximum) may not be necessary.

The meaning of these 16 core identifiers is listed in
column 1122, and for conformity, the type of input PS
these identifiers correspond to is listed in column 1123.

Note for example, the identifier 1124, of value 0100 (same
as 1111 in FIG. 11) represents a 4_4 class of full PS
(Sum4 core), therefore this explains the choice of this
absolute value for the 1111 identifier in FIG. 11.

At this point, based on the information included in the
algorithm output, the full PS can be fully and uniquely
restored during decompression (0100 identifier means a 4_4
class full input PS, where the core is 010 (i.e. a 121 AB
format), and where the link to the next PS is O (i.e., there is
one or more bits after this PS that are the same type as the
delimiter). With the FB (not shown), the actual value of
every bit in the input PS is also restored.

The core identifiers listed in FIG. 11, column 1121,
represent the full list of core identifiers used in the algo-
rithm. As described by columns 1122 and 1123, these
identifiers cover all exception PS (4, 5, and greater same
type bits) as well as all class 1_4 to 14_4 input full PS. As
shown in FIG. 9 and commented above, out of all these
classes that are covered by the algorithm, classes 4_4 to

US 11,677,416 B2

15

14_4 do generate RODC configurations to be used in the
algorithm for coverage of other constructs and for compres-
sion gain, as will be explained next.

As mentioned above, classes 4_4 to 14_4 generate RODC
configurations that are used by the algorithm for coverage of
other constructs and for compression gain. The next focus of
this disclosure is to explain how these RODC configurations
are used for the stated objective. In order to address this
fundamental aspect, a close-up look at a real life data string
is needed.

Such a real-life data string will have same type bit groups
of 4, 5 and greater and 1_4 to 14_4 class input full PS,
all covered, as described in FIG. 11 and FIG. 9, but the
real life data string will also have any Sum larger than
14 (i.e. class x_4, with x larger than 14) and can also
have an infinite string of bits (infinite for all practical
considerations) without any four or larger same type bit
(i.e. with only lower grade groups). The name that is
used in this disclosure for such an infinite string of bits
with only 1, 2, and 3 same type bit (lower grade)
groups, is “open string”.

All these (class x_4 with x greater than 14, and open
string) are not covered based on what has been intro-
duced up to now—without these being covered, the
algorithm cannot work.

In order to resolve this problem, i.e. to cover the above
described class x_4 and open string, the remain con-
figurations (RODC) are used.

Before describing how RODC are used to cover the above
stated constructs, a closer look at the Remain configurations
is required.

According to FIG. 9, for Sum4 (class 4_4), one Remain
configuration is made available. According to FIG. 11,
for that configuration, identifier 0100 applies, and
based on FIG. 8, configuration 111 is the available
configuration. Therefore, the Remain configuration that
is made available by the 4_4 class is 0100111 (a seven
bit configuration).

A similar derivation can be made for the three Remain
RODC from class 5_4. These three Remain configu-
rations are 01011101, 01011110 and 01011111, there-
fore three eight bit configurations. Note that configu-
rations 01011110 and 01011111 can be merged into a
seven bit configuration 0101111. Therefore the class
5_4 makes available either three eight bit configura-
tions, or one eight bit and one seven bit configuration.

On the same lines, an important point to make is with
regard to class groups where the Remain number is the same
order of magnitude as the Need number.

For example, if class 11_4 is considered (where
Remain=520 and Need=504), it can be derived that this
class makes available a five bit configuration together
with an eleven bit configuration.

The five bit configuration for example is derived and
shown to be 10111.

Of course, rather than having made available a five bit and
an eleven bit configuration, it may be preferred to use
520 14 bit configurations (and that is perfectly equiva-
lent).

The point made here is that such classes, where the remain
number is in the same order of magnitude as the need
number, provide a wide range of RODC. Similar dis-
cussions can be made for all available configurations,
of all classes.

To understand how these Remain configurations are used

to achieve the above stated objective, the configuration
made available by class 4_4 will be used for the discussion.

—
W

20

30

35

40

45

55

65

16

The reason why this is chosen is because this is the most
straightforward example and easiest to follow. This discus-
sion then can be similarly extended to any and all Remain
configurations.

The Remain configuration made available by class 4_4 is,
as derived above, 0100111, a seven bit configuration.

This seven bit configuration of class 4_4 can cover 2
configurations of class 5_4, 4 configurations of class
6_4, etc.—for every consecutive class increase a factor
of 2 increase in coverage is noted.

For example, the named class 4_4 Remain configuration
has the power to cover 2'° (1024) configurations in
class 14_4, or 2'° (65536) configurations in class 20_4.
This number, 65536, is called 20_4 Worth of one 4_4
Remain configuration.

In FIG. 9, column 905 is called Worth and is referring to
this aspect. Clearly the Worth column can be filled
relative to which class is being targeted by the Remain
configurations, using the principle just introduced and
demonstrated.

Besides the Worth factor of a Remain configuration into

a higher class, just defined above, another very important
aspect must be noted with regard to the potential use of these
Remain configurations.

This aspect is regarding the rate increase of a Remain
configuration into a higher class, versus the rate
increase of the Need configurations into that same
respective higher class.

This aspect has been already discussed above, and it was
shown that the rate increase of one Remain configura-
tion is two between two consecutive classes, while the
rate increase for Need is notably less than two between
the same two consecutive classes.

This is yet another fundamental aspect for one or more of
the embodiments developed in this disclosure. In order
to benefit the most from this rate increase difference,
high order classes must be exploited.

In order to fundament this statement, an example is
considered. The class 4_4 remain configurations has
a worth rate increase factor into class 14_4 of 2'°
(1024), and a Need rate increase factor into the same
class of 3136/7 (448), in other words, over ten
classes, the power of one Remain configuration
increases by a net factor of more than 2 over the
Need.

These two considerations (the worth factor of Remain
configurations, and the rate increase differences between
Remain and Need) represent the basis of usage of Remain
configurations coming from classes 4_4 to 14_4, in order to
achieve the goals of full coverage of an arbitrary input data
string (i.e. coverage of any x_4 class and coverage of an
open string).

In FIG. 12, a list of all classes and constructs that are
covered in order to achieve the full coverage of an arbitrary
input data string are provided.

It must be noted that a person skilled in the art can
improve the algorithm performances by covering up to
higher order classes. The objective of the disclosure is
achieved as presented here, allowing persons skilled in the
art to develop versions and implementations to achieve
multiple optimizations.

Returning to FIG. 12, note that there are four groups of
constructs that are being covered by the algorithm, to
achieve the stated algorithm objective:

a. 1201—groups of four and greater same type bits, will

cover the Exception PS, as defined.

US 11,677,416 B2

17

b. 1202—full PS of class 1_4 to 27_4.Class 1_4 to 14_4
are covered directly by the core identifiers, while class
15_4 to 27_4 are covered by the Remain configurations
(RODC) of class 4_4 to 14_4

c. 1203—the required open data string (with no delimiter,
i.e. consisting of only lower grade groups) is covered.
A 28 bit open data string is covered here. This 28 bit
open string is covered as three sub-classes: class 25_3,
class 26_2, and class 27_1, where x_y translates in any
ICAC in x, terminated by y same type bits. 1203 is also
covered by the RODC.

d. 1204—a group of special classes to complete the gaps
in coverage, as class 26_3, class 27_2, and class 27_3.
For these classes, the above x_y definition applies.
1204 is also covered by the RODC. The need for these
so called gap classes will be explained next.

As defined, Exception PS (1201) do not need a link bit.
The full PS classes at 1202 require a link bit. While
necessary and highly beneficial, the link bit does introduce
a disadvantage since it reduces by a factor of 2 the configu-
rations that can be covered by that respective output class.
For example, the 4_4 class has a four bit identifier, a three
bit ODC, and a one bit link. If the link bit would be
eliminated in some way (such that the link bit is not required
anymore), the ODC would be four bit in length resulting in
the class covering 16 configurations instead of just 8, This is
the motivation why 28 in 1203 (the open string) is broken
down in class 25_3, class 26_2 and class 27_1, and why
1204 in FIG. 12 is added as class 26_3, class 27_2, and class
27_3. By doing this, the open string of 28 bits does not
require a link bit, and neither any of the six classes in 1203
and 1204. Not needing the link bit, all these classes pack
double the configurations using half the Remain configura-
tions. More insight into this is required, as follows:

25_3 does not require a link bit because after the group of
three bits the bit type must change, otherwise 25_4
would be considered instead of 25_3

26_2 would require a link bit, but by introducing 26_3, it
fills the gap to 26_4, and at that point neither 26_2 nor
26_3 will require a link bit anymore.

Same logic is applied for 27_1. Here, two classes are
introduced to fill the gap to 27_4 (i.e. 27_2 and 27_3).

Finally, to conclude the above discussion, note that at this
point, with the classes outlined in FIG. 12, any arbitrary
string is covered by the algorithm.

It is time to introduce the format of a termination PS:

As described, the largest class, in term of bit length, is
class 27_4. That is a 31 bit PS.

A termination PS is defined as a string of data, 31 bits or
less in length, representing the last bits before the end
of an IFDS.

In other words, the last 31 bits or less of an IFDS are not
processed through the normal algorithm procedure as
described above, no matter what these last 31 bits or
less contain, including if these bits contain a full PS of
any class that fits in the 31 bit space, an open string (a
28), or 31 bits of same type (an exception PS). The
following need to be clarified:

a. If any class, as specified in FIG. 12, starts before the
31% bit from last and extends into the last 31 bits of
the IFDS, it is processed normally.

b. Anything within the last 31 bits of the IFDS, even if
it is a class that would start and complete before the
IFDS ends, is processed differently.

This different processing named above at b. is introduced
with respect to FIG. 13.

5

15

25

35

40

65

18

Since in the termination PS there is no restriction such as
that imposed by the delimiter so that in the core there
are only groups of lower grade, the termination PS can
contain groups of any number of same type bits, from
1 to 31 (the maximum termination PS size).

In FIG. 13, there are two columns: 1301 lists all possible
same type bit groups (1,2, ... N ... 31, with N smaller
than 31), and 1302 describes the representation for each
such group (0 for 1 same type bit group, and (N-1) 1
s followed by a 0 for a group of N type bits, as shown
by 1303 and 1304, and exemplified by 1305 and 1306
for the 31 bit case). All the bits in the termination PS
will be written according to the representation shown in
FIG. 13 in the algorithm output.

In addition, the last O from the representation of the bits
of the termination PS in the algorithm output can be
dropped, since that last O is self understood, therefore
redundant. Dropping this last O will provide an extra
gain of 1, so, the termination PS always provides a gain
of 1.

A gain of 1 is also noted if the IFDS ends in a 27_4 class
that starts with bit 32 from last, the gain of 1 coming
from dropping the link bit of the 27_4 class (which
becomes unnecessary, since there is nothing coming
after the last bit in this 27_4 class).

This concludes the basic implementation of the algorithm,

The following immediate extensions of the basic imple-

mentation of the algorithm can be made. There are four
extensions detailed below. All extensions do not interfere
with the basic compression algorithm just presented. These
extensions simply use the output of the basic compression
algorithm to obtain additional gain.

2. When fifteen PS in a row occur, where these fifteen PS
are either exception PS (four or more same type bits) or
of class 1_4 to 6_4, a remain configuration of eleven
bits is used as an identifier to signal this special
situation. In this special situation, since it is known that
for the next fifteen PS, there will be only eight types of
PS, only eight identifiers will be needed, and at the
same time the remain configurations from classes 4_4,
5_4, and 6_4 will be internally redistributed among
these. All the above will lead to a gain of one for all
configurations within this suite, and for some configu-
rations within this suite will lead to a gain of 2. The
overall compression performance for this situation
becomes:

At least a gain of 4 to a maximum of a gain of 19, for
the entire fifteen PS sequence, function of content
(i.e. which configurations are in the fifteen PS
sequence)

Note: In order to implement this extension of the
algorithm, counting and tracking of PS types and
class is required over fifteen PS. If within these
fifteen PS there is a PS of class 7_4 or larger, the
counting and tracking is restarted from that 7_4 or
larger occurrence. This extension occurs when all
fifteen PS are exception PS and full PS up to class
6_4, otherwise the output data is left untouched as it
came out from the basic implementation of the
algorithm.

3. When twenty PS in a row occur, where these twenty PS
are either exception PS (four or more same type bits) or
of class 1_4 to 14_4, a remain configuration of eleven
bits is used as an identifier to signal this special
situation. In this special situation, since it is known that
for the next twenty input PS, there will be only fifteen
types of input PS, the identifiers are reassigned, and at

US 11,677,416 B2

19

the same time the remain configurations from classes

4_4 to 14_4 will be internally redistributed among

these. All the above will lead to an average gain of one

for more than 50% of the configurations within this
suite. The highest impact, and that is when this exten-
sion should be entered, is when most of the twenty PS
are of class 7_4 to 14_4 (note that this extension is
designed not to overlap extension 2). When class 1_4 to

7_4 dominate for this extension, the gain can drop to

slightly more than 30% of all configurations within this

suite to be of gain 1. The overall compression perfor-
mance for this situation becomes:

A gain of 1 to a maximum of gain of 9, for the entire
twenty PS sequence, function of content (which
configurations are in the twenty PS sequence). It is
possible not to achieve a gain of 1, again, function of
content, even if there are twenty PS sequence are
exception PS and class 1_4 to 14_4. If a gain of
minimum 1 is not achieved, the extension is simply
not activated, and the compressed output data is left
untouched as it came out from the basic implemen-
tation of the algorithm.

Note: In order to implement this extension of the
algorithm, counting and tracking of PS types and
class is required over twenty PS. For this extension,
tracking the overall gain is also required. If within
these twenty PS there is a PS of class 15_4 or larger,
the counting and tracking is restarted from that 15_4
or larger occurrence. The extension occurs when all
twenty PS are exception PS and full PS up to class
14_4, otherwise the output data is left untouched as
it came out from the basic implementation of the
algorithm. The extension is not activated when the
overall gain is not at least 1.

4. When twenty-five PS in a row occur, where these
twenty-five PS are either exception PS (four or more
same type bits) or of class 1_4 to 24_4, a remain
configuration of eleven bits is used as an identifier to
signal this special situation. In this special situation,
since it is known that for the next twenty-five input PS,
there will be a reduced set of input PS, the identifiers
are reassigned, and at the same time the remain con-
figurations from classes 4_4 to 24_4 will be internally
redistributed among these. All the above will lead to an
average gain of one for about 90% of the configurations
within this suite. The highest impact, and that is when
this extension should be entered, is when most of the
twenty-five PS are of class 15_4 to 24_4 (note that this
is designed not to overlap extension 2 or extension 3).
When classes less than 15_4 dominate for this exten-
sion, the gain can drop to slightly more than 35% of all
configurations within this suite to be of Gain 1. The
overall compression performance for this situation
becomes:

A gain of 1 to a maximum of gain of 14, for the entire
twenty-five PS sequence, function of content (which
configurations are in the twenty-five PS sequence). It
is possible not to achieve a gain of 1, again, function
of content, even if there are twenty-five PS sequence
of exception PS and class 1_4 to 24_4. If a gain of
minimum 1 is not achieved, the extension is simply
not activated, and the compressed output data is left
untouched as it came out from the basic implemen-
tation of the algorithm.

Note: In order to implement this extension of the
algorithm, counting and tracking of PS types and
class is required over twenty-five PS. For this exten-

10

20

25

40

45

60

65

20

sion, tracking the overall gain is also required. If
within these twenty-five PS there is a PS of class
24_4 or larger, the counting and tracking is restarted.
The extension occurs when all twenty-five PS are
exception PS and full PS up to class 24_4, otherwise
the output data is left untouched as it came out from
the basic implementation of the algorithm. The
extension is not activated when the overall gain is
not at least 1.
Extensions 2, 3, and 4 are mutually exclusive in this order.
A key final improvement within this disclosure is intro-
duced next, improvement that is used for one or more
additional embodiments of this disclosure. This improve-
ment insures further additional compression gain. The
improvement uses un-altered output of the basic implemen-
tation of the algorithm and of any of the extensions one to
four presented above, so, this improvement does not inter-
fere or alter in any way the process presented up to now,
including the basic processing and all the four extensions.
This improvement is simply an addition to the algorithm, to
insure additional gain.

This improvement works as follows.

To introduce and describe this improvement very clearly,

two new concepts are being introduced.

The first concept is the concept of well defined identifier,
and the second concept is the concept of root identifier.

In order to understand the concepts of “well defined
identifiers” and “root identifiers”, reference to FIG. 14
is being made, where, again, class 4_4 is used as an
example and basis for discussion. This example dis-
cussion is similarly extended to any identifier, configu-
ration, and class.

With respect to FIG. 14:

1401 is an index, 1402 lists the classes considered for this
discussion, 1403 lists the ICAC considered for this
discussion, 1404 lists the applicable core identifiers
used in the algorithm output, and 1405 lists the appli-
cable ODC written in the algorithm output.

The focus class is 4_4, which has seven ICAC, and uses
the core identifier 0100. A very important observation
is that class 27_4 uses the core identifier 0100 as well.

For class 4_4, the correspondence ICAC to ODC is listed
on lines 1 to 7 of index 1401.

The combination of core identifier and corresponding
ODC create the “well defined identifiers”. Class 4_4
has therefore seven well defined identifiers that
uniquely correspond to the seven ICAC. For example,
the well defined identifier 0100010 corresponds to the
ICAC 121 of class 4_4.

It becomes apparent that the well defined identifiers
represent nothing else but the full description of the
combination used by the algorithm to describe every
input PS. While the well defined identifiers represent an
integral part of the algorithm, and are required for the
algorithm to function, a very limited number of iden-
tifiers need to be defined with the simple goal to define
a class in as little identifiers as possible. The core
identifiers cannot be used for this scope, because same
core identifier is typically used by more than one
class—0100 for example is used by class 4_4 and class
28_4.

Therefore, the concept of root identifier is introduced:

A root identifier represents the minimum common root to
describe a group of well defined identifiers within a
single class only.

To understand this definition for the root identifier, class

4_4 is being referred to again.

US 11,677,416 B2

21

As described above, class 4_4 consists of seven well
defined identifiers. According to FIG. 14, the minimum
root that is common to all these seven well defined
identifiers is the core identifier, 0100. But the core
identifier cannot be used as a root identifier, since the
core identifier is also used for class 28_4.

In order to determine the root identifier(s) for class 4_4,
the focus must be placed on how can class 4_4 only be
described. The only way to distribute 7 configurations
(or 7ODC) is 4 plus 2 plus 1, therefore for class 4_4,
there will be three root identifiers, which are repre-
sented by groups 1406, 1407, respectively 1408, as
shown in FIG. 14.

According to FIG. 14 the minimum common root for
these three groups are 01000, 010010, and 0100110,
therefore a root identifier of five bits, a root identifier of
six bits, and a root identifier of seven bits.

For class 27_4, since all ICAC of this class are covered by
the remain configuration of class 4_4, the root identifier is
directly this remain configuration. Therefore, the root iden-
tifier for class 27_4 is 0100111 (1409 in FIG. 14), i.e. the
root identifier is of seven bits. It should be noted that such
a situation, where there is a single root identifier for an entire
class, is rare. Typically, the root identifiers are distributed (as
the case is for class 4_4).

Determining the root identifiers for all classes of this
algorithm (all classes outlined in FIG. 12), is fundamental
for this improvement. To describe the principle on how this
improvement works, it is sufficient to list the root identifiers
in term of how many bits they have. In this disclosure, a root
identifier that is N bits long is called to be a root identifier
of class N.

In FIG. 15, all root identifiers are listed, in term of how
many bits they have.

Note that there are 13 types (or classes) of root identifiers
for the entire algorithm (column 1501), where each
type has a different bit length, from 4 bits in length to
16 bits in length (column 1502), i.e. root identifiers of
class 4 to class 16.

There are multiple root identifiers in every class, as shown
in FIG. 15, column 1503. Column 1503 represents the
original list of root identifiers for every class, where
each root identifier meets the definition (see above).

Column 1504 is the redistribution of these root identifiers
for optimizations in the algorithm, where the optimi-
zations follow mathematical conditions to optimize
gain, as will be referred to next.

Column 1503 and 1504 are perfectly equivalent, with the
following transformations to be noted:

One root identifier of class 4 (1505) is transformed in
one root identifier each of class 5, 6, 7, 8, 9, and two
root identifiers of class 10.

Eighteen root identifiers of class 7 (1506) are trans-
formed in 36 root identifiers of class 8

One root identifier of class 9 (1507) are transformed in
four root identifiers of class 11

The root identifier transformation from column 1503 to
column 1504 needs to be clarified:

Taking class 4_4 of full PS as an example again, where
there were three root identifiers, one of each 5 bits, 6
bits, and 7 bits (see above) i.e. one each of class 5, 6,
and 7, the above transformation means nothing else but
to say that class 4_4 has one root identifier of class 6
and five root identifiers of class 7, or seven root
identifiers of class 7, which both are perfectly equiva-
lent to the initial class 5, 6, 7 distribution.

25

35

40

50

55

60

65

22

It can be seen that any transformation of root identifiers
can be made, as long as it makes sense practically,
meaning that one cannot transform class 7 root identi-
fiers from PS class 4_4 in class 8 or larger because there
are not so many bits in an original class 4_4 PS, so,
such transformation has no practical basis, it does not
make sense.

Many optimizations to achieve improved algorithm per-
formances can be made by a person skilled in the art,
and again, the examples offered in this disclosure have
the goal to fundament the disclosure and provides the
means for a person skilled in the art, and these
examples do not limit in any way the disclosure.

These root identifiers, as mentioned, are found already in

the output of the algorithm, after the basic and extensions
processing. FIG. 16 exemplifies this in order to introduce the
next steps in processing the root identifiers to achieve the
goals of the improvement that is presented here. Class 2_4
of full PS, and class 5 of exception PS are used for this
discussion, with reference to FIG. 16.

In FIG. 16, 1601 is the first PS used in this example, a full
PS.

The algorithm output of this full PS is shown, as 1630,
where 0010 is the identifier for class 2_4, the following
0 represents the ODC for 1_1 ICAC of class 2_4, and
the O to follow after that is the link bit.

1602 is the second PS used in this example, an exception
PS. The algorithm output of this exception PS is shown
as 1640, where 11110 is the identifier (five same type
bits). Exception PS, as described above, does not have
a link bit or an ODC.

Normally, after the basic and extension processing, the
algorithm output is written serially, as shown at 1603,
where six PS are shown as an example, followed by
many others (the dots).

This improvement requires that the algorithm output is
not written as a single output string 1603 anymore, but
as two separate related strings, one containing the root
identifiers (1613), and one containing the so-called
“details” (1623). The two outputs (root identifiers and
details), put together, do not represent anything else but
the original algorithm output.

For example, 1630 consists of 1634 (called RI1, for
root identifier of PS1, of value 0010) and 1635
(called D1, details of PS1, of value 00, which are all
the remaining bits of 1630 after the root identifier is
removed).

For 1640, similarly, RI12 is of value 11110 and there are
no details for this PS (that is OK to have no details,
and consider everything as root identifiers, and that
is the case for 5 to 10 same type bit exception PS
only—a five bit exception PS is chosen for this
example to make the point).

Once 1613 and 1623 are assembled, obviously the origi-
nal algorithm output is restored by reading first 1613,
and based on what root identifiers are there, it is know
how many bits to extract from 1623 for each root
identifier (for example, extracts two bits for root iden-
tifier 0010, and zero bits for root identifier 11110).

When an extension identifier occurs (such as an open

string 28 for extension 1, or the 11 bit identifiers for
extensions 2, 3, or 4) this full extension identifier is placed
in the 1613 part of the output, while all the output data for
the constituent PS of the exception (such 25 PS for extension
4) are written in 1623.

Now, with 1623, nothing is done further for this improve-

ment. The additional processing that is being done further

US 11,677,416 B2

23

for this improvement is for 1613 (the root identifiers parti-

tion). From the point of view of the above named processing

of the root identifiers, there are several steps, as follows:

1. The root identifiers are paired, as shown by 1614, 1615,
1616.

2. The formed pairs are described based on their classes.
For example, RI1 is of class 4 (four bits root identifier),
and RIS is of class 5 (five bits). According to column
1504, there are 32 combinations (4 times 8) to describe
the class4-class5 pair.

a, That is exactly what this improvement is doing, for
every possible pair (there are 13 classes times 13
classes, therefore 169 possible pairs, each pair with
a different number of combinations according to
column 1504 in FIG. 15).

In term of implementation details of step 2 above, there
are two tiers:

i. Tier 1: Combinations of two of root identifiers of class
4,5, and 6
The output of such combinations has the format shown

in FIG. 17 as 1701.

At 1705, 4*4 means combinations of root identifiers of
4 bits, with root identifiers of 4 bits (i.e. class 4 with
class 4). Since there are four root identifiers of class
4 according to FIG. 15 column 1504, it means that
there are 16 such combinations possible.

Note at 1706, FIG. 17, that the output format to
describe such combinations is 0_<7 bit> (i.e. O
followed by 7 bit number). Since in a 7 bit number
there are 128 possibilities, and only 16 possibilities
are needed, it means that there are 112 possibilities
remaining.

These 112 possibilities will be used by the next com-
bination group, which is 1706 (combinations of root
identifiers of class 4, with class 5, and of course class
5 with class 4). According to FIG. 15 column 1504,
there are 64 total such combinations.

There were 112 times 2 available possibilities (times 2
because the 112 are transferred from 7 bit to 8 bit
basis), means that there will be 160 (112*2-64)
possibilities left to be transferred to the 1707 group,
and so on.

At the very end, a number of possibilities are left
available, which are redistributed among the 1705 to
1709 groups. These redistributed possibilities create
the gain combinations of every group, represented as
a percentage of total combinations of that group. The
tally of resulting gain combinations will be given at
the completion of presenting this improvement.

Tier 2 has the same principle and procedure at Tier 1.

The output format is also the same, shown as 1711 in

FIG. 17. The differences are;

Sub-tier 2-1 (not shown, but explained here) resolves
combinations between root identifiers of class 4, 5,
or 6 and root identifiers of class 7 and greater

Sub-tier 2-2 (not shown, but explained here) resolves
combinations between root identifiers of class 7 and
greater and root identifiers of all classes (from 4 to
16)

The <combination_number> at 1711 in FIG. 17 is 10
bit long for combinations of classes 4*7 and 7*4, and
up to and including 31 bit long for combinations of
classes 16*16.

As a final note concerning the algorithm, the differenti-
ating aspects are outlined when the RB (relative bit) trans-
formation is employed. As outlined when the RB transfor-
mation has been defined and exemplified in connection with

ii.

=

20

25

40

45

60

65

24

FIG. 2, RB transformation fundamentally changes the struc-
ture of the IFDS. Consequently, the distribution of PS
classes and ICAC configurations within a class and across
the IFDS drastically changes. Accordingly, the output of the
algorithm is fundamentally different.
Clearly, the classic approach when there are two different
representations of the same input data is to perform a data
analysis and determine which of the two representations
generate better results. This would be one approach here as
well. However, the current implementation of the algorithm
does not feature any data analysis and this stance is
extremely beneficial for hardware implementation, as it has
been discussed and will be further shown next in the
hardware section. Therefore, in order to benefit from having
two very different representations of the input data and
therefore possibly two very different outcomes in term of
compression gain, while preserving this great benefit of
requiring no data analysis, the following solution is outlined:
a. Consider the two formats for the input data:
i. The regular IFDS, and
ii. The IFDS obtained after the RB transformation

b. Run the two inputs through the algorithm. This can be
done through two parallel chains of similar hardware
(implementation 1), or by running the algorithm once
for each data set (implementation 2). While theoreti-
cally, the first solution would suggest that double the
hardware is necessary, and the second solution would
suggest that the execution time will be double, none is
completely true, since the first solution can be addi-
tionally pipelined and/or only certain sections paral-
lelized, while the second solution can similarly benefit
from pipelining. In any case, a hardware penalty will be
predominantly visible for implementation 1, and an
execution time penalty will be predominantly visible
for implementation 2, but for neither will be double.

c. Once the two algorithm outputs are generated, the

output with the highest compression gain will be cho-
se1.

As mentioned in the summary section, the compression
process can be repeated using as new IFDS the output of the
just completed cycle. Unlimited number of cycles can be
processed for unlimited compression, the only theoretical
limit being that an IFDS cannot be smaller than a practical
limit of about 1000 bits. When implementing such a multi-
cycle compression, the only addition is a header where a
counter keeps track of the number of executed cycles, so that
the decompression is processed accordingly. The above
quoted number of 1000 bits results from the extensions
primarily, from the headers (such as the mentioned counter),
and of course the need to provide statistical variability of PS
and classes. This is a theoretical limit, practically, having
IFDS smaller than 1M order is not really justified. The
decompression is perfectly mirrored to the compression
process, leading to an identical restored file to the initial
IFDS, which was the input to the first cycle.

In the remaining of this disclosure, the suggested hard-
ware implementation is described. Similar to the algorithm,
it should be noted that the suggested hardware implemen-
tation is by example, and is in no way limiting, and the
skilled person will appreciate that the disclosed implemen-
tation is equally applicable to multiple variations and alter-
natives, and multiple optimizations are possible to increase
the performance metrics of the hardware, such as the execu-
tion speed or the hardware complexity. It must also be noted
that the suggested hardware implementation is described at
a high level, outlining key steps, therefore the low level

US 11,677,416 B2

25

details, which are not relevant for the substance and objec-

tive of this disclosure, may be not addressed.

The suggested hardware implementation architecture is a
memory intensive pipelined architecture, as depicted in FIG.
18. The following hardware blocks and data-flow path
constructs are outlined in FIG. 18:

a. 1801 represents the input data bus. This data bus is
preferred to be 64 bits, but 32 bits is acceptable. This
size of data bus is motivated since the maximum length
of a PS is 32 bits and the 33" bit is needed to determine
the link bit. A 32/64 bit data bus is no problem in any
computer, audio, video based application. A 32 bit data
bus may be preferred however for packaging con-
straints/cost.

b. 1802 is a small data buffer. The goal of this buffer is to
stream the flow of data in case an input delay in
receiving data occurs. The second goal of this buffer is
to transform the data in a 64 bit data in case 1801 is of
32 bit. Having the data in 64 bit format is important for
two reasons—to cover a PS in one step, and to deter-
mine the link bit, where applicable, in the same step.

c. 1803 is the new 64 bit data bus

d. 1804 is a controller, implementing the following attri-
butions:

i. Determine the PS and class

ii. If the PS is an exception PS with a number of same
type bits greater than 32, create an output to indicate
this.

iii. Track and count the PS, as applicable, for basic
algorithm, extension 1, extension 2, extension 3, and
extension 4.

e. 1805 is the output of controller 1804, and contains the
following:

i. 33 bits with the PS that has been determined

ii. 1 bit to indicate if the 33 bit above represents a full
PS, or an exception PS with a number of same type
bits greater than 32

iii. Three bits for every of the four extensions, indicat-
ing:

i. If current PS applies to subject extension that the
three bits describe. For extensions 2, 3, 4, if
current PS does not apply to that respective exten-
sion, the tracking for that extension is restarted.
For example, for extension 2, the current PS is a
class 8_4, therefore it does not apply to extension
2, and consequently, the tracking for extension 2 is
restarted (see the details at extension 2 descrip-
tion).

If with the current PS, the extension is completed

and the output can be written. For example, for

extension 2, if the current PS completes the
required 15 PS sequence, the flag is activated and
the output for extension 2 is generated.

iii. If none of the extensions complete or are all
restarted, the previous PS are written as regular
basic output. This is self-explanatory, if none of
the extensions meet the conditions, the output is
written as basic output.

. 1806 is the memory to generate output from PS input for
basic algorithm. The size of this memory is 68M of 32
bit words. The PS is the address to this memory.

g. 1807 is the memory to generate output from PS input
for exception 1. The size of this memory is 68M of 32
bit words. The PS is the address to this memory.

h. 1808 is the memory to generate output from PS input
for exception 2. The size of this memory is 1k of 32 bit
words. The PS is the address to this memory.

ii.

=

20

25

40

45

55

60

65

26

i. 1809 is the memory to generate output from PS input for
exception 3. The size of this memory is 8k of 32 bit
words. The PS is the address to this memory.

j- 1810 is the memory to generate output from PS input for
exception 4. The size of this memory is 2.5M of 32 bit
words. The PS is the address to this memory.

k. 1811 to 1815 are all the same, and are small, 32 location
buffers of 32 bit each. These buffers accumulate the
outputs of 1806, 1807, 1808, 1809, 1810 respectively
until the decision by controller 1804 is made as which
of the buffers are transmitted to the output (basic or one
of the extensions).

. 18164 is a controller that receives input from controller
1804.

i. If controller 1804 sends to the output the PS as basic,
controller 1816a does nothing, leaves data from 1811
as is.

ii. If controller 1804 sends to the output the PS as
extension 1, the PS is obviously coming after a 28,
and the controller 1816a does nothing, leaves data
from 1812 as is.

iii. If controller 1804 sends to the output the PS as
extension 2, controller 18164 inserts a PS which is
the 11 bit identifier used for exception 2. Then sends
the 15 PS generated for exception 2, from 1813.

iv. If controller 1804 sends to the output the PS as
extension 3, controller 18164 inserts a PS which is
the 11 bit identifier used for exception 3. Then sends
the 20 PS generated for exception 3, from 1814.

v. If controller 1804 sends to the output the PS as
extension 4, controller 1816a inserts a PS which is
the 11 bit identifier used for exception 4. Then sends
the 25 PS generated for exception 4, from 1815.

m. 18165 is the memory to extract and separate the root
identifier and the details parts of every PS output.
Memory size is 68M of 32 bits. The PS output is the
address to this memory. For extension 1, the memory
will detect the open string (the trigger for extension 1),
separate the open string in root identifier and details,
and place the next output in the details partition. For
extensions 2, 3, and 4, the memory will indicate that the
root identifier is the actual respective 11 bit identifier
which is the PS, and the details represent all the 15, 20,
respectively 25 PS coming after the respective 11 bit
identifier.

n. 1817 is a LIFO buffer of size 8x32 bits, to store last
eight root identifiers.

0. 1818 is a LIFO buffer of size 33x32 bits, to store the
last eight “details”. 25 out of the 32 details are only
used for extension 2, 3, and 4.

p. 1819 is a controller that will pair two by two root
identifiers from the 1817 buffers, and create a 32 bit
output.

q. 1820 is a memory that will generate the corresponding
output to the root identifier pair that is the address to
this memory. The size of this memory is 32k of 32 bit
words.

r. 1821 is a controller that will assemble the output of the
root identifier pair from 1820, with the corresponding
details parts from 1818 that were corresponding to the
root identifiers in the pair. The size of the 1821 output
is 96 bit wide (32 bit for the root identifier pair, and 32
bit each for the details part corresponding to each root
identifier). Note that for the extensions, the details can
be spread over 5, 7, or 9 96 bit words. Without the
extensions, the 96 bit size is a maximum size for root
identifier pair and details (minimum size is 10 bits—

—_—

US 11,677,416 B2

27

root identifier pair can be minimum 8 bits, and the
details can be even zero bits).

s. 1822 is a buffer, of 10 locations, 96 bit wide each. 10
locations can cover any extension.

t. 1823 is a controller that will take every 96 bit output and
will extract just the used bits, based on the root iden-
tifier and corresponding detail content. These extracted
used bits can have a wide range of bit lengths, from
eight bits, up to 90 bits. Then the controller will append
this extracted data to an output string. This output string
is 192 bits wide.

u. 1824 is a controller that will parse the data in 64 bit
wide format from the 192 bit wide output string gen-
erated by 1823. 1824 will also extract the FB of the
IFDS, and prepare and update the headers such as the
counter for the number of cycles when the IFDS is
compressed multiple times, as mentioned.

v. 1825 is the 64 bit word memory that stores the
algorithm compressed data. The size of this memory
depends on the application. A suggested size for this
memory is 100M of 64 bit words, which would cover
input files (IFDS) up to about 6 Gbits. For files larger
than that, the compressed data will be written in an
external memory.

w. 1826 is the internal 64 bit data bus going back to block
1802, this data bus being used during the multi-cycle
compression, as described above. This internal bus will
be used primarily when the input files are smaller than
6 Gbits—for input files greater than that, the input data
for the subsequent compression cycles will be read
from the external output memory.

x. 1827 is the 64 bit data bus for chip output, to out the
compressed data either for the external memory in case
of input files greater than 6 Gbits, or for external uses,
such as for wired and wireless transmission between
users, storage, communication, etc.

y. Finally, 1828, the border, signifies the entire chip.

Note the fully serial flow of data within the chip—the
ideal case for a pipelined implementation. In fact, as pre-
sented above, the flow of data is already pipelined (registers
are present at every block—1802, 1804, 1806 and all on that
level, 1811 and all on that level, 1816, 1817, 1818, 1819,
1820, 1821, 1822, 1823, 1824, 1825.

As mentioned at the start of this hardware section, this
suggested hardware implementation architecture is a
memory intensive pipelined architecture. The pipelined part
of the proposed architecture is clarified. The memory inten-
sive part refers to the fact that major blocks are represented
by memory (such as 1806, 1807, 1808, 1809, 1810, 1816,
1820, and 1825). This memory is of two types:

Functional memory, required by the algorithm to operate.
This memory is represented by blocks 1806, 1807,
1808, 1809, 1810, 18165, and 1820. The total size of
this memory is about 210M of 32 bit.

Data memory, require to write algorithm output. This
memory is represented by block 1825. As mentioned,
the size of this memory depends on the application,
with a suggested size of 100M of 64 bit.

The chip memory internal requirements seem large for
today’s capabilities, but doable. High speed internal and
external memory architectures are to be employed for the
implementation—this is not the object of this disclosure.

Obviously, all this memory can be external to the chip.

In this version of chip implementation, where most of the
memory is external, the chip architecture is altered by

20

25

40

45

60

65

28

means of additional external data and address busses

(one or more, depending on the speed of data through-

put desired from the chip).

Several versions are possible, that are apparent to a person
skilled in digital design. By having external memory,
there will be a penalty in the chip data throughput, in
the best case of just an increased memory access time,
and in the worst case of multiplexing and serializing the
access to the output memory.

Two extreme examples are provided as two implementa-
tion options of having the memory external to the chip:
Example 1 is when all external memory banks have

their own dedicated busses.

Blocks 1806 and 1807. These will require an extra 33
bit address bus and an extra 32 bit data bus.

Block 18165. This will require an extra 32 bit
address bus and an extra 32 bit data bus

Block 1825. The data bus already exists for this
(1827 and 1801), and an address bus is not needed,
because data is written or read serially in a LIFO
fashion. Only a controller is needed for this.

This implementation will require a chip package of
about 250 pins. The actual remaining silicon chip
is fairly small (just the controllers and some small
memory), and is /O dominated. In term of
throughput, this is not affected as compared to the
initial proposed all-included architecture, rather
than an increased memory access time.

Example 2 is when the memory is in two banks, one
functional and one output, and the access to the
functional memory is all multiplexed.

Blocks 1806, 1807, and 18165 will require a 34 bit
address and 32 bit data bus.

This arrangement will produce a savings in pins of
about 70 pins, so the package pin requirement is
dropped to about 180 pins, but the throughput is
affected, since the memory access to perform the
functions for 1806/1807 and 18165 need to be
serialized.

For decompression, a different chip is required. The
controllers are different, and the memory content for the
functional memory is different. FIG. 19 describes the archi-
tecture for the decompression chip. Similar as for FIG. 18,
the following functional blocks are outlined:

a. 1901 represents the input data bus where the com-

pressed data is received. This data bus is preferred to be

64 bits, because the compressed data is written in 64 bit

format (see the compression chip above) but 32 bits is

acceptable.

b. 1902 is a small data buffer. The goal of this buffer is to
stream the flow of data in case an input delay in
receiving data occurs. The second goal of this buffer is
to transform the data in a 64 bit data in case 1901 is of
32 bit.

. 1903 is the new 64 bit data bus
d. 1904 is a controller, implementing the following attri-
butions:

i. Extract the FB

ii. Extract the headers, such as the counter indicating
how many cycles occurred in generating the com-
pressed data. The same number of cycles will be
replicated during decompression.

iii. Transform the 64 bit format of the data into 192 bit
wide words.

e. 1905 is a controller that disassembles the 192 bit words
in words that represent processed root identifier pairs
and the details of the two root identifiers that have been

o

US 11,677,416 B2

29

processed in pair. Since the processed root identifier
pair has a wide range of bit length (from 8 to 32 bit in
length) and the details part corresponding to each root
identifier has also a wide variation (from zero bits to 32
bits, and more for the extensions 2, 3, 4), the complex-
ity of this controller is notable, and to generate the
disassembled output can be slow. To resolve this prob-
lem and to seamlessly generate the disassembled output
fast, the following solution is proposed for this con-
troller:

i. Controller takes 96 bits from the received 192 bit
words, obtaining 96 bit words.

i. Controller takes the first 32 bits of this 96 bit word.
Clearly this 32 bit word will contain for sure the
entire processed root identifier pair, but it may con-
tain also full or part of the details of the two root
identifiers, and more. All that is important is that it
contains the processed root identifiers and these are
the first bits in this string, from the most significant
bit.

iii. Controller reverses this 32 bit word, i.e. the most

significant bit becomes the least significant bit.

iv. This reversed 32 bit word becomes an address to a
memory. The address will be 32 hit long, but the
memory content will recognize just the addresses
that are relevant. For example, if the address contains
an eight bit word (starting from the least significant
bit) that is relevant to represent a processed root
identifier pair, since the eight bit word is unique. The
rest of the 24 bit content in the address is ignored. In
other words, a 32 bit word will generate a unique
output from this memory (determining automatically
which of the 32 bits are relevant for the memory,
starting from the least significant bit).

v. The output of the memory will indicate:

i. The two unprocessed root identifiers. Since the

root identifiers are up to 16 bit long, the two root
identifiers will be outputted from the memory as
two 16 bit words.
How many bits in the 32 bit address were repre-
senting the processed root identifier. Since the
processed root identifier pair is up to 32 bit long,
this information is provided by the memory in five
bits format. This information is used by the con-
troller to eliminate these bits from the 96 bit word
and know where the detail bits for the two root
identifiers start in this string.

iii. How many bits each root identifier has in the
details part. Since each root identifier can have up
to 32 bits in the detail part (without exception 2,
3, 4), and the three exceptions must be added, this
information is outputted by the memory as six bits
for each root identifier. This information is used by
the controller to know how many bits to consider
for the details of the two root identifiers from the
96 bit word. If any of the exceptions 2, 3, 4 have
been flagged as present, then the controller will
consider up to nine of the next 96 bit words for the
details of this root identifier pair.

iv. Therefore the output of the memory will be 16 bit
for the first unprocessed root identifier, plus 16 bit
for the second unprocessed root identifier, plus 5
bits for the number of bits for the processed root
identifier pair in the 96 bit word, plus six bits each
for the number of bits in the 96 bit word (or
multiple of 96 bit words in case of extensions 2, 3,

-
=

ii.

=

20

25

30

35

40

45

50

55

60

65

30

4), representing the details part corresponding to
each root identifier—total 49 bits.

vi. The controller will process the 49 bit output of the
memory by creating the two output PS by putting
together each unprocessed root identifier and the
corresponding details.

vii. The controlled will eliminate the bits for the
processed root identifiers and the bits for the two
corresponding details of the root identifiers, from the
96 bit word (or multiple of 96 bit words for exten-
sions 2, 3, 4), and therefore prepare the next 96 bit
word for the next processing.

f. 1906 is the memory associated to controller 1905, as
described above. The size of this memory is 32k of 49
bit words, and has a 32 bit word address.

g. 1907 is a buffer of 8 (33) locations in size and 32 bit
words, containing the first output PS obtained from
controller 1905 and memory 1906 as described above,
from the root identifiers and details. 1907 will contain
the first root identifier in the pair, therefore will contain
the first output PS. It is obviously very important in the
decompression to keep the order of the PS. The extra 25
locations (33-8) are only used in case of extensions 2,
3, 4.

h. 1908 is a buffer of 8 (33) locations in size and 32 bit
words, containing the second output PS obtained from
controller 1905 and memory 1906 as described above,
from the root identifiers and details. 1908 will contain
the second root identifier in the pair, therefore will
contain the second output PS. It is obviously very
important in the decompression to keep the order of the
PS. The extra 25 locations (33-8) are only used in case
of extensions 2, 3, 4.

1. 1909 is a straight-forward controller merging the output
PS from 1907 and 1908 (i.e. putting them in order,
second after first). A series of memory locations con-
taining serial output PS, is formed. Now, what is left in
order to restore the IFDS, is to transform this series of
output PS in input PS.

j. 1910 is a controller that interprets the current PS coming

from 1909. The controller is simply comparing this
current PS with the identifier for extension 1 (the open
string of class 28), or for extension 2, 3, 4 (the three 11
bit identifiers). If the comparison is true for extension
1, is sending the data to 1912, if the comparison is true
for extension 2, is sending the data to 1913, if the
comparison is true for extension 3, is sending the data
to 1914, if the comparison is true for extension 4, is
sending the data to 1915, and if the comparison is not
true for the extensions, is sending the data to 1911. To
compare the current PS with the identifier for extension
1, controller 1910 will require a memory of 15M of 32
bit words.

k. 1911 is a memory that transforms output PS in the
corresponding input PS for basic. The size of this
memory is 68M of 32 bit words, and is the reversal of
1806.

1. 1912 is a memory that transforms output PS in the
corresponding input PS for extension 1. The size of this
memory is 68M of 32 bit words, and is the reversal of
1807.

m. 1913 is a memory that transforms output PS in the
corresponding input PS for extension 2. The size of this
memory is 1k of 32 bit words, and is the reversal of
1808

US 11,677,416 B2

31

n. 1914 is a memory that transforms output PS in the
corresponding input PS for extension 3. The size of this
memory is 8k of 32 bit words, and is the reversal of
1809

0. 1915 is a memory that transforms output PS in the
corresponding input PS for extension 4. The size of this
memory is 2.5M of 32 bit words, and is the reversal of
1810

p- 1916 is a buffer, of 64 locations of 32 bits, which takes
the data as is generated from either of 1911, 1912,
1913, 1914, and 1915.

q. 1917 is a controller that uses the FB and headers
extracted by 1902. If the headers indicate that this is the
last decompression cycle, the real bit value in the PS
from 1916 is restored. If this is not the last cycle, the
counter for the number of cycles is decremented, and
after the current decompression cycle completes, a new
cycle is restarted.

. 1918 is the memory data in which the uncompressed
data is written. Similar considerations are outlined as
for the 1825 data memory in the proposed compression
chip. A 200M of 32 bit words size is suggested, for the
same target of about 6 Gbit uncompressed final output,
with a similar discussion for an off-chip data memory.

. 1919 is the internal 64 bit data bus going back to block
1902, this data bus being used during the multi-cycle
decompression, as described. Similarly as for the com-
pression chip, this internal bus is primarily motivated
when the data memory is internal.

. 1920 is the 32 bit data bus for chip output, to out the
uncompressed data for external uses, or for the external
data memory when such used.

a. Finally, 1921, the border, signifies the entire chip

Similar to the compression chip, the decompression chip
features a fully serial flow of data within the chip as
well—the ideal case for a pipelined implementation. For the
decompression chip, similarly as for the compression chip,
the flow of data is already pipelined. Also similarly, the
decompression chip features functional memory and data
memory. The functional memory is about 160M of 32 bit
words (smaller than the functional memory in the compres-
sion chip, since the memory that extracts the rood identifiers
and details from PS is not necessary in the decompression
chip). The data memory is the same size as in the compres-
sion chip. The functional memory for the decompression
chip consists of 1906, 1910, 1911, 1912, 1913, 1914, and
1915, while the data memory consists of 1918.

External memories to the chip can be used for the decom-
pression chip as well, with the same discussions and poten-
tial penalties. The functional memory that is primarily
preferred to be external is 1910, 1911, 1912, and 1915, with
1910 representing one functional bank and 1911, 1912, and
1915 representing the second functional bank, where the two
banks need to be serialized in an implementation solution
similar to solution at example 2 described at the compres-
sion chip. Estimated performances are similar as the com-
pression chip.

To conclude, final remarks about the full disclosure, with
the goal to outline possible attractive optimizations or modi-
fications, are provided.

The embodiments discussed in this disclosure use delim-
iters of size four. Consequently, in the PS core, groups of
same type bit smaller than the delimiter (i.e. smaller than
four, ie. groups of 1, 2, 3) are acceptable. Briefly, the
discussion here targets to outline the consequences of focus-
ing on a size larger than four and on a size smaller than four.

-

12

—

20

25

30

35

40

45

60

65

32

a. For a size larger than four:

a. Consider a size five.

b. Preliminary analysis shows that a size five may
generate more gain, because the identifiers will be of
size five, and much more remain configurations will
be available. However, the main drawback is that the
size of functional memory will increase to very large
sizes. Accordingly, the general outline will be:

i. The hardware complexity increases

ii. The functional memory sizes in particular
increases substantially

iii. The gain once the processing is activated appro-
priately increases

iv. The execution speed decreases since the hardware
complexity and the processing is higher

b. For a size smaller than four

a. Consider a size three

b. Preliminary analysis shows that a size three may not
be possible, because identifiers of size three are
required, leading to not having sufficient classes to
generate sufficient remain configurations. Just for
conformity, considering that size three actually
works (which, again, seems it does not), the general
outline would be:

i. The hardware complexity decreases, including the
functional memory sizes in particular which
decreases substantially. External functional
memory would never be justified.

ii. The processing is activated with increased prob-
ability as compared to size four, however, more
cases are estimated to generate gain zero.

iii. The execution speed increases since the hardware
complexity and the processing is lower

Concluding, changing the size has notable implications on
all aspects and performances. While in some cases a larger
or a smaller size can be beneficial, it is considered that for
the embodiments as described in this disclosure size four is
providing good trade-offs between gain, complexity, and
execution speed. A person skilled in the field however can
alter and re-engineer the embodiments of this disclosure to
optimize the performances at a higher level for other sizing,
or other types of delimiters. From the simple analysis
provided above, a larger size (size five) is attractive for such
investigations and optimizations.

Another possible attractive optimization or modification
refers to an aspect discussed across this disclosure, respec-
tively the RB transformation. The suggested hardware out-
lined in FIG. 18 and FIG. 19, can be altered by introducing
a controller to perform this RB transformation and perform
a double processing (one direct, as described in the hard-
ware, and one using the RB transformed IFDS, and at the
end choose the result that provides best gain. The additional
hardware is negligible, but the theoretical processing speed
is halved.

Yet another attractive optimizations, as briefly discussed
in the disclosure, is to extend to use higher order Sum
(higher order core). For example, an attractive Sum would
be Sum36, where the Need configurations can be described
with Sum-4 number of bits, i.e. the worth factor of remain
RODC configurations greatly increases, That can be an
attractive pursuit, with the note that the functional memory
needs increase quite substantially, making a requirement to
have all the functional memory as an external memory (at
least at the current level of technology). Having the func-
tional memory as an external memory is not an impediment,
other than a possibly slower speed (with proper data-busses

US 11,677,416 B2

33

and adjusted chip architecture, as outlined above in the
hardware section), so, this optimization is notably attractive.

Finally, another attractive optimization pursuit is a multi-
chip parallel architecture. In such architecture, the chip will
consists of the controllers only, largely as described. Mul-
tiple such chips (for example a 32 chip parallel architecture)
will access external memory banks. The applications of such
parallel architectures can be for example live compression,
transmission, and decompression of raw high definition
lossless video content, where the transmission medium
requirements are even of the lowest available standards.

The applications of the chips and chip-sets outlined in this
disclosure, based on the disclosed algorithm, are countless,
advancing the current state of the art in communications,
high definition and hi-fi video and audio transmission
including cell-phone and social media, audio/video cameras,
laptops/computers, internet, data storage applications, con-
ferencing, etc., including:

Integrated in the transceiver chain of a cell-phone, for the
highest quality audio/video, social media communica-
tions, and related

Integrated in a laptop wireless/wireline, for the highest
quality video conferencing, data storage, communica-
tion between users, and related

Integrated in appropriate devices for highest quality, reli-
ability, storage capabilities, and other performances as
a function of application, for multimedia applications,
internet, high definition audio/video downloads, cloud
computing, IoT (Internet of Things), ADAS, GPS, and
related.

From reading the present disclosure, other variations and
modifications will be apparent to the skilled person. Such
variations and modifications may involve equivalent and
other features which are already known in the art or are
implied by the embodiments presented in this disclosure.
Such variations and modifications may increase the perfor-
mance of the algorithm, such as improve the processing
speed or the gain. For example, modifying the sizing (as
outlined above), or increasing the Sum order, or implement
parallel processing paths for AB versus RB representations,
and others suggested or not explicitly in this disclosure, will
achieve such improvements. There are countless such varia-
tions and modifications possible as covered or derived
by/from the embodiments of this disclosure, and a chip
implementing the object of the disclosure can be designed to
be reconfigurable, since one optimization, alteration, or
modification may be useful in one application and may be
skipped in another application—therefore one chip is to be
available with variable settings function of the application.

Although the appended claims are directed to particular
combinations of features, it should be understood that the
scope of the disclosure of the present invention also includes
any novel feature or any novel combination of features
disclosed herein either explicitly or implicitly or any gen-
eralisation thereof, whether or not it relates to the same
invention as presently claimed in any claim and whether or
not it mitigates any or all of the same technical problems as
does the present invention.

Features which are described in the context of separate
embodiments may also be provided in combination in a
single embodiment. Conversely, various features which are,
for brevity, described in the context of a single embodiment,
may also be provided separately or in any suitable sub-
combination. The applicant hereby gives notice that new
claims may be formulated to such features and/or combina-
tions of such features during the prosecution of the present
application or of any further application derived therefrom.

20

25

30

40

45

60

65

34

For the sake of completeness it is also stated that the term
“comprising” does not exclude other elements or steps, the
term “a” or “an” does not exclude a plurality, and reference
signs in the claims shall not be construed as limiting the
scope of the claims.

The invention claimed is:

1. A method to partition an arbitrary binary input data
string (IFDS) into well-defined consecutive segments, com-
prising:

(a) describing said IFDS into groups of bits of alternating

same type bits, comprising:

an arbitrary binary input data string (IFDS);

wherein said IFDS is described in term of number of
bits in consecutive groups of bits;

wherein each of the said consecutive groups of bits are
groups of bits where the bits are of same bit type as
either 0 (0 logic) or 1 (1 logic);

wherein said bit type in any two of said consecutive
groups of bits are of the opposite type, or alternating
from 0 to 1 or from 1 to 0;

a first bit in the said string of bits is used as reference
to determine the bit type in every of said consecutive
groups of said alternating same type bits;

(b) identifying in said described IFDS a group of bits of

a preferred bit pattern, comprising:

with respect to said preferred bit pattern, the rest of the
bits in the said string of bits form groups character-
ized either by the same preferred bit pattern or by a
different bit pattern;

wherein the said different bit pattern is compared to the
said preferred bit pattern as having a lower grade or
a higher grade;

the said lower grade represents any objective measure,
such as represents a smaller (lower) binary number
when compared to the binary number represented by
the said preferred bit pattern, or a smaller (lower)
number of binary 1 bits when compared to the
number of binary 1 bits within the preferred bit
pattern, or a smaller (lower) number of binary O bits
when compared to the number of binary 0 bits within
the said preferred bit pattern, or a smaller (lower)
number of same type bits as compared to the number
of same type bits in the said preferred bit pattern;

the said higher grade represents any objective measure,
such as represents a larger (higher) binary number
when compared to the binary number represented by
the said preferred bit pattern, or a larger (higher)
number of binary 1 bits when compared to the
number of binary 1 bits within the said preferred bit
pattern, or a larger (higher) number of binary 0 bits
when compared to the number of binary 0 bits within
the said preferred bit pattern, or a larger (higher)
number of same type bits as compared to the number
of same type bits in the said preferred bit pattern;

(c) classifying the bits in said described IFDS relative to

said identified groups of preferred bit pattern, compris-

ing:

a first group of said preferred bit pattern or of said
higher grade is detected in said IFDS wherein in-
between the first bit in said IFDS and the first bit in
said first group there are zero bits, meaning that the
said first group is first in said IFDS;

a second group of bits of said preferred bit pattern is
detected in said IFDS wherein when the said first
group does not exist, in-between the first bit in said
IFDS and the first bit in said second group there is at
least one bit, and when said first group exists, said

US 11,677,416 B2

35

second group follows said first group and in-between
the last bit of said first group and first bit of said
second group there is at least one bit;

a third group of bits of said preferred bit pattern or of
said higher grade immediately follows the said sec-
ond group, wherein said immediately means that
in-between the last bit of said second group and the
first bit of said third group there are zero bits and
wherein the bits in said third group can be either of
same or opposite bit type as the bits in the said
second group;

a fourth group of said higher grade which follows said
third group when in-between the last bit of said third
group and first bit of said fourth group there is at
least one bit, wherein said group of higher grade is
divided into a group of said preferred bit pattern and
a remain group, wherein if said remain group is a
group of said lower grade is merged into the next
group and if said remain group is a group of higher
grade becomes a stand-alone group of the same
classification as the third group;

a fifth group of said preferred bit pattern which follows
the said remain group of said fourth group when if
said remain group is a group of said lower grade,
in-between the last bit of said remain group and first
bit of said fifth group there can be zero or more bits
of lower grade, and when if said remain group is a
group of higher grade, in-between the last bit of said
remain group and first bit of said fifth group there is
at least one bit;

wherein at least one of the following pairs exist in said
IFDS, as said first group and said second group, said
first bit in said IFDS and said first group, said second
group and said first bit in said IFDS and not said first
group, said second group and said third group, said
third group and said fourth group, said fourth group
and said fifth group, and wherein according to these
pairs, in-between said first group and said second
group, or in-between said first bit in said IFDS and
said second group, or in-between said second group
and said first bit in said IFDS and not said first group,
or in-between said third group and said fourth group,
or in-between said remain group and said fifth group
when said remain group is of said higher grade, or
in-between said fourth group and said fifth group
when said remain group is of said lower grade, there
is one or more groups of said lower grade;

wherein summing all the bits for all groups of said
lower grade that exist in-between one of said pairs,
a number that is characteristic, or a characteristic
number, is formed for the said groups of lower grade;

wherein only a set of said characteristic numbers are
accepted for use, wherein said numbers are in-
between one and a determined maximum character-
istic number greater than one;

wherein when a said group of lower grade that exists
in-between one of said pairs has a characteristic
number greater than said maximum characteristic
number, said group is divided into sub-groups
wherein each such sub-group is characterized by a
characteristic number belonging to a well defined
sub-set of said accepted characteristic numbers;

wherein a said group of lower grade or a said sub-group
characterized by the said sub-set of accepted char-
acteristic numbers does not always terminate with a
group of said preferred bit pattern;

36

(d) assembling said classified bits into well-defined con-
secutive segments, comprising:

(1) zero or one of said first group;

(2) one or more of said third group also known as

5 exception group;

(3) one or more of said group characterized by a said
accepted characteristic number terminated in a said
preferred group, also known as first full group;

(4) one or more of said group characterized by a

10 characteristic number belonging to a well defined
sub-set of said accepted characteristic numbers that
does not terminate with a group of said preferred bit
pattern, also known as second full group.

s 2. The method, of claim 1, wherein step (a) is replaced

with the following description, comprising:
an arbitrary binary input data string (IFDS) said IFDS is
described in term of change in-between two consecu-
tive bits, with said change being either constant from
20 bit-to-bit (0-t0-0 or 1-to-1), or opposite from bit-to-bit
(0-to-1 or 1-t0-0);
wherein said IFDS, once is described in term of change
in-between two consecutive bits is then described in
term of number of bits in consecutive groups of bits;
25 wherein the bits in each of the said consecutive groups of
bits are of same bit type as either 0 (0 logic) or 1 (1
logic) and wherein said bit type in any two of said
consecutive groups of bits are of the opposite type, or
alternating from O to 1 or from 1 to 0;

30 4 first bit in the said IFDS is used as reference to
determine the bit type in every of said consecutive
groups of said alternating same type bits.

3. The method of claim 1 comprising:
;s the said preferred bit pattern is a group of a certain

number of bits of same bit type;
wherein the said lower grade is a group or combination of
groups of bits of a number of bits of same bit type
wherein the number is smaller than the number of bits
40 in said preferred bit pattern; and
wherein the said higher grade is a group of bits of a
number of bits of same bit type wherein the number is
larger than the number of bits in said preferred bit
pattern.
45 4. The method of claim 1 comprising:
the said preferred bit pattern is a group of four bits of same
bit type;
the said lower grade is a group or combination of groups
of one, two, or three bits of same bit type;
50 the said higher grade is a group of five or more bits of
same bit type.
5. The method of claim 1 further comprising:
a group of last bits in the said IFDS;
wherein the size of said group of last bits depends on the
55 size of said maximum characteristic number and on the
number of bits in said group of preferred bit pattern;
wherein said group of last bits may contain one or more
groups of said preferred pattern, or of lower grade, or
of higher grade; and
60 wherein said group of last bits is modelled and formatted
differently than the rest of the bits in the said IFDS,
respectively differently than said first group, said
exception group, said first full group, and said second
full group.
65 6. The method of claim 5 wherein said partitioned IFDS
into well defined consecutive segments and into said last
string is modelled and formatted into a unique equivalent

US 11,677,416 B2
37

output string, wherein each of said consecutive segments is
modelled and formatted into a unique equivalent output
segment, comprising:

38
wherein the total number of such identifiers is limited;
a specially assigned bit placed immediately after said
orderly possible binary combination of a previous of

(a) describing, modelling, and formatting said first full

said consecutive segments wherein said specially

group and said second full group, comprising: 5 assigned bit specifies if the first bit in a current of
the number of all possible binary combinations of bits said consecutive segments is of same type or of
in a group characterized by a said accepted charac- opposite type as the last bit in said previous of said
teristic number depends on the said characteristic consecutive segments, and where the specially
number; assigned bit is used when said previous of said
the number of all acceptable binary combinations of 10 consecutive segments is of said first full group type;
bits in a group characterized by a said accepted wherein the size, or number of bits of such identifiers,
characteristic number is smaller than said possible is such that the number of bits of such identifiers plus
binary combinations, when the said characteristic the number of bits of said orderly possible binary
number is larger or equal to the number of bits in the combination plus the said specially assigned bit is
said preferred bit pattern, where said number of 15 smaller of equal to the number of bits of the said
acceptable binary combinations is smaller than said characteristic number plus the number of bits in the
possible binary combinations because the possible said preferred bit pattern;
binary combinations that contain groups of said wherein a said consecutive segment of said first full
preferred bit pattern or said higher grade are not group type is modelled and formatted by a said
accepted as acceptable binary combinations, which 20 identifier followed by a said orderly possible binary
acceptable binary combinations contain only groups combination followed by a said specially assigned
of said lower grade; bit, resulting in an equivalent first output segment of
the said number of acceptable binary combinations is said first full group;
equal to the said number of possible binary combi- wherein a said consecutive segment of said second full
nations when the said characteristic number is 25 group type is modelled and formatted by a said
smaller than the number of bits in said preferred bit identifier followed by a said orderly possible binary
pattern, where the number of said acceptable binary combination, resulting in an equivalent second out-
combinations is equal to said possible binary com- put segment of said second full group;
binations because since said characteristic number is (b) describing, modelling, and formatting said first group
smaller than said preferred bit pattern, binary com- 30 and said exception group, comprising:
binations within said possible binary combinations an id-fier that is used to describe the said first group or
that have groups of bits of said preferred bit pattern said exception group;
or said higher grade cannot exist; wherein the total number of such id-fiers is limited; and
each of the said acceptable binary combination is wherein the number of bits of a said id-fier depends on
uniquely described by an orderly combination of said 35 the number of bits in said preferred bit pattern or said
possible binary combination (orderly possible binary exception group such that the number of bits in said
combination) wherein orderly means in a specific id-fier is smaller or equal to the number of bits for the
controlled order; smallest content of said first group or said exception
the difference between the said number of possible group;
binary combinations and the said number of accept- 40 wherein a said consecutive segment of said first group
able binary combinations are called remain combi- or of said exception group consisting of said pre-
nations; ferred bit pattern is modelled and formatted by a said
each of the said remain combinations is uniquely id-fier, resulting in an equivalent third output seg-
described by a said orderly possible binary combi- ment of said first group or of said exception group;
nation that was not used to describe any of the said 45 wherein a said consecutive segment of said first group
acceptable binary combinations; or of said exception group consisting of said higher
the number of said acceptable binary combinations plus grade is modelled and formatted by a said id-fier
the number of said remain combinations is equal to followed by well defined number of bits with said
the number of said possible binary combinations; well defined number of bits plus the number of bits
a determined set of groups of bits each characterized by 50 in said id-fler equals to the number of bits in said
a said characteristic number belonging to the said set consecutive segment, resulting in an equivalent
of accepted characteristic numbers generate said fourth output segment of said first group or of said
remain combinations; exception group;
all the rest of groups each characterized by one of all (c) wherein by assembling said described, modelled and
other characteristic numbers in the said set of 55 formatted consecutive segments and said last string in
accepted characteristic numbers that are not used by the same order as said consecutive segments were
the said determined set of groups, are using said portioned in said IFDS, an output string that is equiva-
generated remain combinations; lent to said IFDS is obtained.
wherein the number of all possible binary combinations 7. The method of claim 5, further comprising:
of bits generated by one remain combination when 60 a combination of a reduced set of said modelled and
this remain combination is used depends on the formatted consecutive segments which exist within a
difference between the characteristic number of the slice of said output string;
group using the remain combination and the charac- wherein said identifiers and said id-fiers create a pool of
teristic number of the group generating the remain ids;
combination; 65 wherein the said combination refers to combining two or

an identifier that immediately precedes a said orderly
possible binary combination;

more of either said ids, or, said orderly possible binary
combinations, or select bits of said orderly possible

US 11,677,416 B2

39

binary combinations that are constituent of said
reduced set of modelled and formatted consecutive
segments;
wherein said ids, said orderly possible binary combina-
tions, representing said reduced set of modelled and
formatted consecutive segments, constitute a reduced
set of total pool of said ids, respectively a reduced set
of total said orderly possible combinations specific to a
reduced set of said characteristic numbers; and

wherein said combination can be between said ids, said
orderly possible binary combinations that are consecu-
tive or within a limited distance from each other.

8. The method of claim 5, further comprising:

a limited number of binary words;

wherein said identifiers and said id-fiers create a pool of

ids;

wherein said binary words are formed by comprising ids

only, or ids and select bits that are part of said orderly
possible binary combinations;

wherein said binary words are formed such that each of

said binary words represent the least number of bits that
are common to a collection of said ids only or said ids
followed by said orderly possible binary combinations
that describe only one of said characteristic numbers,
and such that in order to fully describe all possible
binary combinations of every individual characteristic
number, the least number of said binary words are
necessary.

9. The method of claim 8 wherein any of said binary
words is transformed in an equivalent form to the original
binary word form, wherein said equivalent form has the
same or smaller number of bits as said original binary word
form, wherein in special circumstances the said equivalent
form may have a larger number of bits than said original
binary word form, and where the transformation is done for
such objectives as to improve the method performances.

10. The method of claim 8, wherein:

any one of said modelled and formatted consecutive

segments is partitioned in two parts, wherein one part
consists of the applicable of said binary words, and the
second part is the remainder after the said applicable
binary word is removed; and

the part containing the said applicable binary word par-

tition and where the part containing the said remainder
partition are processed separately.

11. The method of claim 10 wherein the said part con-
taining the said applicable binary word partition is processed
by combining two or more of said binary words that are
either consecutive or within a defined distance from each
other.

12. The method of claim 11 wherein:

the said processed by combining refers to pairing every

two of said binary words;

wherein after said pairing, a new optimized binary com-

bination is assigned to each pair; and

said new optimized binary combination has optimized

properties, such as it is unique and it has minimum
number of bits, where said minimum number of bits is
smaller or equal to the number of bits in the two said
binary words creating the pair.

13. The method of claim 5, wherein said IFDS is parti-
tioned in multiple slices, and where multiple parallel devices
are used where each device is processing one of said
multiple slices, and where the output of each of said multiple
devices is merged in the same order in which it was
partitioned, and where the resulting merged output repre-
sents the total output.

—_

0

25

40

N

5

55

60

65

40

14. The method of claim 5 wherein the said IFDS to be
processed is pre-processed to determine the optimal way this
processing can be done to achieve optimal performances,
and where said pre-processing can include any optimiza-
tions, such as in re-assigning said orderly possible binary
combinations or said pool of ids or said alternating same
type bits, or such as adjusting the size of the said preferred
bit pattern.

15. The method of claim 5 wherein said output string is
partitioned in one or more slices and wherein within each of
said slices the said acceptable and said remain combinations
are reassigned to binary combinations of different proper-
ties, where such different properties may be either of less
number of bits, or properties that eliminate a specific unde-
sired bit pattern.

16. The method of claim 7 wherein the said reduced set of
total pool of ids or said reduced set of total orderly possible
binary combinations corresponding to the said reduced set of
characteristic numbers are changed, wherein changed com-
prises reassigned or adjusted in size and number of bits, such
as reassigned to a representation having a smaller number of
bits, in order to achieve optimal performances.

17. A method comprising:

describing an arbitrary binary input string in term of

groups of alternating same type bits;

partitioning said described input string in consecutive

segments based on identifying a group of preferred bit
pattern or a predetermined number of bits, wherein
each of said segments comprising a group of preferred
bit pattern and one or more groups of lower grade, or
comprising a group of preferred bit pattern or of higher
grade, or comprising a fixed length group of several
said lower grade groups, wherein said lower grade and
higher grade are formulated relative to the character-
istics of the said group of preferred bit pattern;

modelling and converting each of said segments in a

unique, optimized, equivalent output structure compris-
ing an identifier that may be associated to an orderly
possible binary combination; and

assembling said modelled and converted segments to

form an output string that equivalently represents said
input string.

18. A method wherein an arbitrary binary input string is
processed comprising:

first describing the said binary input string in term of

alternating same type bits;

formatting said first described string comprising one or

more of or a combination of a group of preferred bit
pattern and one or more groups of lower grade, or a
group of preferred bit pattern, or a group of higher
grade;

wherein said lower grade and higher grade are formulated

relative to the characteristics of the said group of
preferred bit pattern; and

modelling and converting said first formatted string in a

first unique, optimized, equivalent output structure
comprising identifiers that may be associated to orderly
possible binary combinations;
second describing same said binary input string in term of
change in-between two consecutive bits which is then
described in term of alternating same type bits;

formatting said second described string comprising one or
more or a combination of a group of preferred bit
pattern and one or more groups of lower grade, or a
group of preferred bit pattern or a group of higher
grade;

US 11,677,416 B2

41

modelling and converting said second formatted string in
a second unique, optimized, equivalent output structure
comprising identifiers that may be associated to orderly
possible binary combinations; and

comparing the said first unique, optimized, equivalent

output structure to the said second unique, optimized,
equivalent output structure, and either the said first or
the said second output structure is chosen as the final
output based on specific determined criteria.

19. The method of claim 17 wherein specific and repre-
sentative parts of two or more of said unique, optimized,
equivalent output structures corresponding to two of said
segments are paired to generate new optimized binary
combinations, wherein the said representative parts can be
consecutive or within a predefined distance from each other,
and wherein the said distance is measured in said segments
or relevant bits.

20. The method of claim 19, wherein an input string
comprising of multiple of said binary segments is processed
in hardware or software.

21. The method of claim 20, wherein customizable set-
tings are used to optimize and reconfigure the hardware or
software implementation options, resulting in optimized
performances.

22. The method of claim 20, wherein the processing is
repeated in a loop of multiple processing cycles when the
output of current processing cycle is used as input for the
next processing cycle, and where this repeated loop pro-
cessing is tracked by specific constructs such as counters.

23. The method of claim 17 wherein every of the said
segments retrieves a said unique, optimized, equivalent
output structure that uniquely corresponds to each of said
every unique segments, and wherein the reverse applies,
meaning every said unique, optimized, equivalent output
structure retrieves a unique said segment that uniquely
corresponds to each of said every unique optimized, equiva-
lent output structure.

24. A method comprising:

partitioning of an arbitrary binary input string wherein

said partitioning occurs every time a group of preferred
bit pattern is detected;
describing the bits in-between any two consecutive such
detections in term of specially formulated properties;

setting a maximum size of a partition when such detection
does not occur, and describing the bits in the said
maximum size partition in term of specially formulated
properties;

such that any of said arbitrary binary input string can be

continuously and fully represented by such said parti-
tions, said maximum size partitions, and said groups of
preferred bit pattern.

25. The method of claim 24 comprising:

modelling and converting each of said partitions, said

maximum size partitions, and said groups of preferred
bit pattern into an unique equivalent construct;
assembling said unique equivalent constructs of their
corresponding said partitions, said maximum size par-
titions, and said groups of preferred bit pattern;
wherein said assembling generates an output string that
uniquely represents said input string.

20

25

40

45

55

42

26. The method of claim 25 wherein a set comprising a
well defined number of unique identifiers is defined in order
to represent any and all possible said unique equivalent
constructs, wherein said set consequently is used to repre-
sent any said output string and consequently any said
arbitrary binary input string.

27. A method, comprising:

describing an arbitrary binary input string in term of

alternating same type bits;

locating in said described string groups of bits of a

preferred bit pattern wherein all other groups of bits in
said described string are either of a lower or of a higher
grade;

classifying the bits in-between two consecutive said

groups of preferred bits;

defining a characteristic number for the said bits in-
between said groups of preferred bits wherein said
characteristic number is between one and a well defined
maximum value;

modelling said bits in-between said consecutive groups of
preferred bits, said groups of bits of preferred bit
pattern, said groups of lower grade, and said groups of
higher grade;

enabling the definition of a finite pool of unique identifiers
that facilitate the unique transformation of any of said
modelled groups into an equivalent output format;

formulating the group of bits comprising last bits in said
input string;

formatting said modelled groups, said preferred groups
and said high order groups, using said finite pool of
unique identifiers;

linking said formatted groups with each other; and

assembling said formatted and linked groups into a unique
output string that is uniquely equivalent with said input
string, wherein said uniquely equivalent comprising
same size;

wherein all steps insure unique processing such that the
reverse process that starts with the said output string
generates an identical string to said input string, and
wherein said reverse process comprising equivalent
reverse steps.

28. A method comprising:

developing a set of well defined binary constructs com-
prising a finite number of subsets of said binary con-
structs wherein each of said subsets has a finite number
of members of a same number of bits, and wherein the
members of every subset has a different number of bits;

uniquely describing any arbitrary binary input string using
said set of well defined binary constructs, wherein said
describing generates a unique output string that is
equivalent with said input string; and

reversing said unique output string to obtain the same said
arbitrary binary input string using said set of well
defined binary constructs.

* * * * *

